search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Chilean Journal of Agricultural Research
Instituto de Investigaciones Agropecuarias, INIA
ISSN: 0718-5820
EISSN: 0718-5839
Vol. 75, No. 3, 2015, pp. 350-356
Bioline Code: cj15047
Full paper language: English
Document type: Research Article
Document available free of charge

Chilean Journal of Agricultural Research, Vol. 75, No. 3, 2015, pp. 350-356

 en Microbiological activity and N transformations in a soil subjected to aggregate extraction amended with pig slurry
Quiroz, Madelaine & Varnero, María Teresa

Abstract

Pig slurry as a fertilizer source has been extensively used in agriculture; however, in order to reduce the risks of contaminating the water supplies given its high level of N sources, it is important to understand the N transformations occurring in the soil where it is applied. In this study, incubations were performed at 25 °C for a period of 63 to 73 d to evaluate the effect of different doses of pig slurry on the global microbiological activity and the N dynamics in time, with an emphasis on N mineralization and nitrification in a soil subject to aggregate extraction. The slurry was applied in doses equivalent to: 0, 162, 244, and 325 m3 ha-1, constituting four treatments: T0, T50, T75, and T100, respectively. The microbiological activity and the contents of NH4 +-N and NO3 --N were measured. Increasing doses of slurry produced an increase in the evolution of the accumulated CO2, with 63.5, 115.0, 112.7, and 125.7 mg 100 g-1 soil for T0, T50, T75, and T100 respectively. A similar situation was observed in the initial contents of NH4 +-N, which were 22.4, 30.3, 44.3, and 60.7 mg kg-1 in each treatment, respectively. On the other hand, the increase in NO3 --N contents were only noticed by the end of the incubation period and corresponded to 28.6, 69.0, 95.3, and 109.8 mg kg-1. In addition, the net N mineralization was predominant in all treatments with slurry during the measurement period, being 9.1, 45.4, 58.1, and 52.7 mg kg-1 for T0, T50, T75 and T100, respectively, at the end of the trial. The mineralization rate of the organic C decreased when increasing the dose of slurry and the mineralization rate of the organic N resulted to be low, which would indicate a high contribution of material resistant to degradation by the slurry, which could have a long term effect in the soil.

Keywords
Degraded soil; microbial activity; N mineralization; N immobilization; pig slurry

 
© Copyright 2015 - Chilean Journal of Agricultural Research
Alternative site location: http://www.inia.cl

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 16-Oct-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil