search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 12, No. 3, 2009
Bioline Code: ej09032
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 12, No. 3, 2009

 en PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent
Tabatabaei, M.; Zakaria, M.R.; Rahim, R.A.; Wright, A.-D.G.; Yoshihito, S.; Abdullah, N.; Kenji, S.; Ikeno, S.; Masatsugu, M.; Nakamura, K.; Sulaiman, A. & Hassan, M.A.

Abstract

16S ribosomal RNA (rRNA)-targeted fluorescent in situ hybridization combined with polymerase chain reaction (PCR)-cloning, light microscopy using Gram stains, scanning electron microscopy and denatured gradient gel electrophoresis were used to reveal the distribution of methanogens within an anaerobic closed digester tank fed with palm oil mill effluent. For specific detection of methanogens, 16S rRNA-cloning analysis was conducted followed by restriction fragment length polymorphism (RFLP) for presumptive identification of methanogens. To cover the drawbacks of the PCR-cloning study, the organization of the microorganisms was visualized in the activated sludge sample by using fluorescent oligonucleotide probes specific to several different methanogens, and a probe for bacteria. In situ hybridization with methanogens and bacterial probes and denatured gradient gel electrophoresis within activated sludge clearly confirmed the presence of Methanosaeta check for this species in other resources sp. and Methanosarcina sp. cells. Methanosaeta concilii check for this species in other resources was found to be the dominant species in the bioreactor. These results revealed the presence of possibly new strain of Methanosaeta in the bioreactor for treating palm oil mill effluent called Methanosaeta concilii SamaliEB (Gene bank accession number: EU580025). In addition, fluorescent hybridization pictured the close association between the methanogens and bacteria and that the number of methanogens was greater than the number of bacteria.

Keywords
anaerobic digestion, DGGE, FISH, methanogens, POME

 
© Copyright 2009 - Pontificia Universidad Católica de Valparaíso -- Chile
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil