search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 28, No. 1, 2017, pp. 76-86
Bioline Code: ej17051
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 28, No. 1, 2017, pp. 76-86

 en Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR
He, Meijing; Cui, Shunli; Yang, Xinlei; Mu, Guojun; Chen, Huanying & Liu, Lifeng

Abstract

Background: Because of its strong specificity and high accuracy, real-time quantitative PCR (RT-qPCR) has been a widely used method to study the expression of genes responsive to stress. It is crucial to have a suitable set of reference genes to normalize target gene expression in peanut under different conditions using RT-qPCR. In this study, 11 candidate reference genes were selected and examined under abiotic stresses (drought, salt, heavy metal, and low temperature) and hormone (SA and ABA) conditions as well as across different organ types. Three statistical algorithms (geNorm, NormFinder and BestKeeper) were used to evaluate the expression stabilities of reference genes, and the comprehensive rankings of gene stability were generated.
Results: The results indicated that ELF1B and YLS8 were the most stable reference genes under PEG-simulated drought treatment. For high-salt treatment using NaCl, YLS8 and GAPDH were the most stable genes. Under CdCl2 treatment, UBI1 and YLS8 were suitable as stable reference genes. UBI1, ADH3, and ACTIN11 were sufficient for gene expression normalization in low-temperature experiment. All the 11 candidate reference genes showed relatively high stability under hormone treatments. For organs subset, UBI1, GAPDH, and ELF1B showed the maximum stability. UBI1 and ADH3 were the top two genes that could be used reliably in all the stress conditions assessed. Furthermore, the necessity of the reference genes screened was further confirmed by the expression pattern of AnnAhs.
Conclusions: The results perfect the selection of stable reference genes for future gene expression studies in peanut and provide a list of reference genes that may be used in the future.

Keywords
Abiotic stress; Drought stress; Evaluation; Expression analysis; Expression stability; Genes responsive to stress; Heavy metal; High salt; Higher-plants; Low temperature; Plant hormones

 
© Copyright 2017 - Pontificia Universidad Católica de Valparaíso
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil