search
for
 About Bioline  All Journals  Testimonials  Membership  News


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 30, No. 1, 2017, pp. 48-57
Bioline Code: ej17076
Full paper language: English
Document type: Research Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 30, No. 1, 2017, pp. 48-57

 en Molecular characterization and genetic diversity of different genotypes of Oryza sativa check for this species in other resources and Oryza glaberrima check for this species in other resources
Chen, Caijin; He, Wenchuang; Nassirou, Tondi Yacouba; Nsabiyumva, Athanase; Dong, Xilong; Adedze, Yawo Mawunyo Nevame & Jin, Deming

Abstract

Background: Availability of related rice species is critical for rice breeding and improvement. Two distinct species of domesticated rice exist in the genus Oryza: Oryza sativa (Asian rice) and Oryza glaberrima (African rice). New rice for Africa (NERICA) is derived from interspecific crosses between these two species. Molecular profiling of these germplasms is important for both genetics and breeding studies. We used 30 polymorphic SSR markers to assess the genetic diversity and molecular fingerprints of 53 rice genotypes of O. sativa, O. glaberrima, and NERICA.
Results: In total, 180 alleles were detected. Average polymorphism information content and Shannon's information index were 0.638 and 1.390, respectively. Population structure and neighbor-joining phylogenetic tree revealed that 53 genotypes grouped into three distinct subpopulations conforming to the original three groups, except three varieties (IR66417, WAB450-4, MZCD74), and that NERICA showed a smaller genetic distance from O. sativa genotypes (0.774) than from O. glaberrima genotypes (0.889). A molecular fingerprint map of the 53 accessions was constructed with a novel encoding method based on the SSR polymorphic alleles. Ten specific SSR markers displayed different allelic profiles between the O. glaberrima and O. sativa genotypes.
Conclusions: Genetic diversity studies revealed that 50 rice types were clustered into different subpopulations whereas three genotypes were admixtures. Molecular fingerprinting and 10 specific markers were obtained to identify the 53 rice genotypes. These results can facilitate the potential utilization of sibling species in rice breeding and molecular classification of O. sativa and O. glaberrima germplasms.

Keywords
African rice; Asian rice; Fingerprinting; Food security; Genetic relationship; Microsatellite markers; Molecular profiling; Phylogenetic tree; Polymorphic alleles; Rice breeding; SSR

 
© Copyright 2017 - Pontificia Universidad Católica de Valparaíso
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil