search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Electronic Journal of Biotechnology
Universidad Católica de Valparaíso
ISSN: 0717-3458
Vol. 2, No. 1, 1999, pp. 20-34
Bioline Code: ej99004
Full paper language: English
Document type: Review Article
Document available free of charge

Electronic Journal of Biotechnology, Vol. 2, No. 1, 1999, pp. 20-34

 en Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils
Prasad, Majeti Narasimha Vara & Freitas, Helena Maria de Oliveira

Abstract

Reclamation of metalliferous areas is a priority field of biogeochemistry of trace elements. Ultramafic outcrops rich in heavy metals have been mapped in different parts of the world. Heavy metals are potentially cytotoxic, caricinogenic and mutagenic. Environment protection agencies and legislations insisting the mine operators to restore the mine spoils and tailings since the metal leachates have serious implications in production of healthy agricultural products. Hence, restoration of mine spoils, tailings and metalliferous soils is a challenging task for the well being of Humans. Synthetic and natural zeolites have been used as chelators for rapid mobility and uptake of metals from contaminated soils by plants. Use of synthetic chelators significantly increased Pb and Cd uptake and translocation from roots to shoots facilitating phytoextraction of the metals from low grade ores. Contrastingly, synthetic cross linked polyacrylates, hydrogels have protected plant roots from heavy metals toxicity and prevented the entry of metals into roots. However, application of these synthetics on large scale may not be a practical solution due to exorbitant costs. Therefore, introduction of metal tolerant wild plants to metalliferous soils, genetic engineering of plants for enhanced synthesis and exudation of natural chelators into the rhizosphere, improvement of the rhizosphere with the help of mycorrhiza and integrated management of the metalliferous ecosystem following the principles of phytoremediation are discussed in this paper.

Keywords
Metalliferous soils, Rhizosphere, Mycorrhizae, Genetic engineering, Metal sequesteration, Metal hyperaccumulators, Metal tolerant plants

 
© 1999 by Universidad Católica de Valparaíso -- Chile
Alternative site location: http://www.ejbiotechnology.info

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil