search
for
 About Bioline  All Journals  Testimonials  Membership  News


Journal of Applied Sciences and Environmental Management
World Bank assisted National Agricultural Research Project (NARP) - University of Port Harcourt
ISSN: 1119-8362
Vol. 23, No. 1, 2019, pp. 99-109
Bioline Code: ja19016
Full paper language: English
Document type: Research Article
Document available free of charge

Journal of Applied Sciences and Environmental Management, Vol. 23, No. 1, 2019, pp. 99-109

 en Bioremediation of Atrazine Herbicide Contaminated Soil Using Different Bioremediation Strategies
OLU-AROTIOWA, OA; AJANI, AO; AREMU, MO & AGARRY, SE

Abstract

This study evaluated the bioremediation of atrazine herbicide contaminated agricultural soil under different bioremediation strategies using indigenous Pseudomonas aeruginosa check for this species in other resources , Bacillus subtilis check for this species in other resources and Aspergillus niger check for this species in other resources as bioaugmentation agents and poultry droppings as biostimulation agent. The results showed that bioaugmentation with Pseudomonas aeruginosa, bioaugmentation with Bacillus subtilis, bioaugmentation with Aspergillus niger, bioaugmentation with bacterial-fungal consortium (Pseudomonas aeruginosa, Bacillus subtilis and Aspergillus niger), biostimulation with poultry droppings, and combined biougmentation and biostimulation (Pseudomonas aeruginosa, Bacillus subtilis, Aspergillus niger and poultry droppings) resulted in maximum atrazine biodegradation of about 97%, 95%, 84%, 99%, 100% and 100%, respectively. The kinetics of atrazine biodegradation in the soil were modelled using first-order kinetic model and the biodegradation half-life estimated. The first order kinetic model adequately described the kinetics of atrazine biodegradation in soil under the different bioremediation strategies. The rate constants ( k 1 ) of atrazine biodegradation in soil subjected to bioaugmentations with Pseudomonas aeruginosa, Bacillus subtilis, Aspergillus niger, and bacterial-fungal consortium ranges between 0.059 day-1 and 0.191 day-1 while for that subjected to natural bioattenuation, biostimulation and combined bioaugmentation and biostimulation are 0.026 day-1, 0.164 day-1 and 0.279 day-1, respectively. The half-life ( t 1/ 2 ) of atrazine biodegradation in soil under natural bioattenuation was obtained to be 26.7 days. This was reduced to between 2.5 and 11.7 days under the application of bioaugmentation, biostimulation and combined bioaugmentation and biostimulation strategies. The bioremediation efficiencies of the different bioremediation strategies in influencing atrazine biodegradation or removal is of the following order: Combined bioaugmentation and biostimulation > Bioaugmentation with bacterial-fungal consortium > Biostimulation with poultry droppings > Bioaugmentation with Pseudomonas aeruginosa > Bioaugmentation with Bacillus subtilis > Bioaugmentation with Aspergillus niger > Natural bioattenuation.

Keywords
Atrazine; Bioaugmentation; Bioremediation; Biostimulation

 
© Copyright 2019 - Olu-Arotiowa et al.

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil