en |
Analysis of Class 1 Integrons and Antibiotic Resistance Genes in Pseudomonas aeruginosa Strains from Benin City, Nigeria
ISICHEI-UKAH, BO & ENABULELE, OI
Abstract
The presence of integrons and antibiotic resistance genes in the genome of Pseudomonas aeruginosa pose a serious problem in the treatment and control of infections caused by this pathogen in hospitals. This study was carried to analyse the presence of class 1 integrons and some antibiotic resistance genes on selected
clinical and environmental strains of Pseudomonas aeruginosa. A total of 120 strains were employed for this study.
The strains were confirmed using molecular method and species-specific primers targeting the 16S ribosomal
ribonucleic acid (rRNA). Polymerase chain reaction (PCR) was used to detect the presence of class 1 integrons and
resistance genes using appropriate primers and conditions. The strains were analysed for the presence of the
following antibiotic resistance genes - aadA, blaPSE, blaAMPC, blaIMP and tetC encoding aminoglycosides, betalactamases,
metallo-beta-lactamases (MBL) and tetracylines resistance respectively. On screening the isolates for
the presence of class 1 integrons, 50/60 (83.3 %) clinical isolates and 46/60 (76.7 %) environmental isolates showed
positive results (P > 0.05). In both clinical and environmental isolates, the highest occurring resistance genes were
blaAMPC and tetC (encoding beta-lactamases and tetracylines respectively), while the least was observed in blaIMP
(encoding metallo-beta-lactamases). In comparison, there was high significance difference (at P<0.01 significance
level) in the resistance gene blaPSE between the clinical and environmental strains. The high prevalence of these
resistance genes is a great threat in the treatment of Pseudomonas infections.
Keywords
Pseudomonas aeruginosa; Resistance genes; Integrons; Beta-lactamases.
|