search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Memórias do Instituto Oswaldo Cruz
Fundação Oswaldo Cruz, Fiocruz
ISSN: 1678-8060
EISSN: 1678-8060
Vol. 102, No. 3, 2007, pp. 377-383
Bioline Code: oc07062
Full paper language: English
Document type: Research Article
Document available free of charge

Memórias do Instituto Oswaldo Cruz, Vol. 102, No. 3, 2007, pp. 377-383

 en Effect of fosmidomycin on metabolic and transcript profiles of the methylerythritol phosphate pathway in Plasmodium falciparum check for this species in other resources
Cassera, María B; Merino, Emilio F; Peres, Valnice J; Kimura, Emilia A; Wunderlich, Gerhard & Katzin, Alejandro M

Abstract

In Plasmodium falciparum check for this species in other resources , the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.

Keywords
Plasmodium falciparum - malaria - fosmidomycin - isoprenoid biosynthesis - real time polymerase chain reaction

 
© Copyright 2007 Instituto Oswaldo Cruz - Fiocruz
Alternative site location: http://memorias.ioc.fiocruz.br

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil