About Bioline  All Journals  Testimonials  Membership  News  Donations

Memórias do Instituto Oswaldo Cruz
Fundação Oswaldo Cruz, Fiocruz
ISSN: 1678-8060
EISSN: 1678-8060
Vol. 110, No. 4, 2015, pp. 560-565
Bioline Code: oc15071
Full paper language: English
Document type: Research Article
Document available free of charge

Memórias do Instituto Oswaldo Cruz, Vol. 110, No. 4, 2015, pp. 560-565

 en Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei
Souza, Mariana Conceição; Padua, Tatiana Almeida; Torres, Natalia Domingos; Costa, Maria Fernanda de Souza; Facchinetti, Victor; Gomes, Claudia Regina Brandão; Souza, Marcus Vinícius Nora & Henriques, Maria das Graças


A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

experimental malaria; novel antimalarial drugs; hydroxyethylamine

© Copyright 2015 - Memórias do Instituto Oswaldo Cruz
Alternative site location:

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2018, Site last up-dated on 17-Sep-2018.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil