search
for
 About Bioline  All Journals  Testimonials  Membership  News


Indian Journal of Pharmacology
Medknow Publications on behalf of Indian Pharmacological Society
ISSN: 0253-7613
EISSN: 0253-7613
Vol. 43, No. 2, 2011, pp. 157-162
Bioline Code: ph11042
Full paper language: English
Document type: Research Article
Document available free of charge

Indian Journal of Pharmacology, Vol. 43, No. 2, 2011, pp. 157-162

 en Influence of drug concentration on the diffusion parameters of caffeine
Mustapha, R. Ben; Lafforgue, C.; Fenina, N. & Marty, J.P.

Abstract

Background and Objectives : In the fields of the pharmaceutical and cosmetic industries and in toxicology, the study of the skin penetration of molecules is very interesting. Various studies have considered the impact of different physicochemical drug characteristics, skin thickness, and formulations, on the transition from the surface of the skin to the underlying tissues or to the systemic circulation; however, the influence of drug concentration on the permeation flux of molecules has rarely been raised. Our study aims to discover the influence of caffeine concentration in a formulation on the percutaneous penetration from gels, as a result of different dose applications to polysulfate membrane and human skin.
Materials and Methods : For this purpose, three identical base gels were used at 1, 3, and 5% of caffeine, to evaluate the effect of the concentration of caffeine on in vitro release through the synthetic membrane and ex vivo permeation through the human skin, using diffusion Franz TM cells.
Results : The diffusion through the epidermal tissue was significantly slower than through the synthetic membrane, which recorded an increase of flux with an increase in the concentration of caffeine. The skin permeation study showed that diffusion depended not only on the concentration, but also on the deposited amount of gel. Nevertheless, for the same amount of caffeine applied, the flux was more significant from the less concentrated gel.
Conclusion : Among all the different concentrations of caffeine examined, 1% gel of caffeine applied at 5 mg / cm 2 showed the highest absorption characteristics across human skin.

Keywords
Absorption rate, Diffusion coefficient, Franz TM diffusion cells, Percutaneous absorption, Permeation flow

 
© Copyright 2011 Indian Journal of Pharmacology.
Alternative site location: http://www.ijp-online.com

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil