search
for
 About Bioline  All Journals  Testimonials  Membership  News


Tropical Journal of Pharmaceutical Research
Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
ISSN: 1596-5996
EISSN: 1596-5996
Vol. 13, No. 8, 2014, pp. 1195-1198
Bioline Code: pr14165
Full paper language: English
Document type: Research Article
Document available free of charge

Tropical Journal of Pharmaceutical Research, Vol. 13, No. 8, 2014, pp. 1195-1198

 en Pegylation of Nanoliposomal Paclitaxel Enhances its Efficacy in Breast Cancer
Esfahani, Maedeh Koohi Moftakhari; Alavi, Seyed Ebrahim; Akbarzadeh, Azim; Ghassemi, Soheil; Saffari, Zahra; Farahnak, Maryam & Chiani, Mohsen

Abstract

Purpose: To encapsulate paclitaxel into nanoliposomes, followed by pegylatation, in order to improve its therapeutic index and reduce side effects in breast cancer.
Methods: In order to prepare nanoliposomal paclitaxel, varying ratios of phosphatidylcholine, cholesterol and paclitaxel were mixed and the formulations pegylated with poly-ethylene glycol 2000 (PEG 2000) to enhance stability, efficiency, as well as solubility. The mean diameter of nanoliposomal paclitaxel and pegylated nanoliposomal paclitaxel were measured by Zeta sizer device and release of paclitaxel from both formulations was determined within 28 h by dialysis method. The cytotoxicity of nanoliposomal and pegylated nanoliposomal paclitaxel was evaluated using 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay.
Results: The mean diameter of nanoliposomal paclitaxel and pegylated nanoliposomal paclitaxel was 421.4 and 369.1 nm, respectively, while encapsulation efficiency was 91.3 ± 5.7 and 95.2 ± 6.3 %, respectively. Paclitaxel released from both formulations in 28 h was 5.53 and 5.02 %, respectively. The cytotoxicity of pegylated nanoliposomal paclitaxel was significantly (p <0.05) greater than that of nanoliposomal paclitaxel (their IC50 = 79.8±2.9 and 86.25±3.4 µg/ml, respectively).
Conclusion: The release pattern and cytotoxicity of pegylated nanoliposomal paclitaxel show that the formulation is superior to nanoliposomal paclitaxel. Furthermore, the mean particle size of pegylated nanoliposome is smaller than that of the non-pegylated preparation.

Keywords
Paclitaxel; Nanoliposome; Breast cancer; Pegylation; Drug delivery; Cytotoxicity

 
© Copyright 2014 - Tropical Journal of Pharmaceutical Research
Alternative site location: http://www.tjpr.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil