search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Tropical Journal of Pharmaceutical Research
Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
ISSN: 1596-5996
EISSN: 1596-9827
Vol. 15, No. 10, 2016, pp. 2173-2182
Bioline Code: pr16287
Full paper language: English
Document type: Research Article
Document available free of charge

Tropical Journal of Pharmaceutical Research, Vol. 15, No. 10, 2016, pp. 2173-2182

 en Neuroprotective effect of paeonol against isoflurane-induced neuroapoptosis and cognitive dysfunction
Zhang, Jian-Xin; Li, Zhi-Ying; Zhao, Liang; Li, Gang; Cao, Gui-Lin & Zhang, Chuan-Yang

Abstract

Purpose: To investigate whether paeonol affords neuroprotection against isoflurane-induced neurotoxicity.
Methods: Separate groups of neonatal rat pups were administered paeonol (20, 40 or 80 mg/kg) from post-natal day 3 (P3) to post-natal day 15. On post-natal day 7, the pups were exposed to 6 h of isoflurane (0.75 %) anesthesia. TUNEL assay was performed to assess neuroapoptosis. Cleaved caspase-3 expressions were evaluated by immunohistochemistry and western blotting analysis. The expressions of apoptotic pathway proteins and mitogen activated protein kinases (MAPKs) were assessed by western blotting. The general behaviour of the rats was determined by open field test and elevated maze test. Y-maze test and Morris water maze tests were performed to evaluate working memory and cognition.
Results: Isoflurane exposure caused (p < 0.05) severe neuronal apoptosis in the hippocampal region and enhanced caspase-3 expressions. Paeonol supplementation remarkably (p < 0.05) reduced neuronal apoptosis and modulated expressions of apoptotic proteins. The raised expressions of NF-κB, TNF-α, IL-6 and IL-1β and significantly (p < 0.05) enhanced JNK/p38 signalling cascades were inhibited by paeonol. The expression levels of ERK were not significantly (p < 0.05) changed, but there was significant improvement in the general behaviour and working memory of the rats.
Conclusion: Paeonol significantly improves cognitive impairments and offers neuroprotection against isoflurane-induced apoptosis via modulating JNK/ERK/p38 MAPK and NF-κB signaling pathways.

Keywords
Apoptosis; Isoflurane; Neurodegeneration; Paeonol; Cognitive impairment; Signaling pathways

 
© Copyright 2016 - Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria.
Alternative site location: http://www.tjpr.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2022, Site last up-dated on 19-Jan-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil