About Bioline  All Journals  Testimonials  Membership  News  Donations

Tropical Journal of Pharmaceutical Research
Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
ISSN: 1596-5996
EISSN: 1596-9827
Vol. 15, No. 11, 2016, pp. 2391-2397
Bioline Code: pr16315
Full paper language: English
Document type: Research Article
Document available free of charge

Tropical Journal of Pharmaceutical Research, Vol. 15, No. 11, 2016, pp. 2391-2397

 en Anti-thrombotic and anti-tumor effect of water extract of caulis of Sargentodoxa cuneata check for this species in other resources (Oliv) Rehd et Wils (Lardizabalaceae) in animal models
Chen, Hong; Wan, Xue-mei & Zhou, Xue-lei


Purpose: To investigate the anti-thrombosis and anti-tumor effect of the water extract of the caulis of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (WCSW) in rat and mouse models.
Methods: WCSW extract was prepared and the main constituents were determined by high pressure liquid chromatography (HPLC). The acute toxicity of the extract was determined in mice. Platelet aggregation in rat platelet-rich plasma (PRP) was examined to evaluate the effect of the extract on platelet function. Thereafter, the cytotoxic activity of WCSW on HL60, A549, S180 and H22 cells was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vivo anti-tumor effect of WCSW was further evaluated on H22 cells transplanted in mice, while the expression of caspase-3, caspase-9, Bcl-2 and Bax proteins were assayed by Western blot analysis.
Results: Protocatechuic acid, rhodiola glucoside and chlorogenic acid were identified as the main constituents of WCSW. Platelet aggregation was significantly inhibited by treatment with the extract at concentrations of 1, 5 and 10 mg/mL. WCSW also showed significant inhibitory effect on HL60, A549, S180 and H22 cells in vitro with half maximal inhibitory concentration (IC50 value of 321.9, 285.0, 130.3 and 76.1 μg/mL, respectively. Furthermore, WCSW exhibited obvious anti-tumor effect on H22 transplanted tumor in vivo. After treatment with WCSW, caspase-3, caspase-9 and Bax were significantly (p < 0.05) up-regulated, whereas Bcl-2 was significantly (p < 0.05) down-regulated in the tumor tissues.
Conclusion: WCSW possesses significant antithrombosis and anti-tumor effect, and therefore, has the potentials to be developed into effective drugs for clinical treatment of cancer and thrombosis diseases.

Sargentodoxa cuneata; Anti-thrombosis; Anti-tumor; Platelet aggregation; Apoptosis; Caspase; Protocatechuic acid; Rhodiola glucoside; Chlorogenic acid

© Copyright 2016 - Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria.
Alternative site location:

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2022, Site last up-dated on 19-Jan-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil