search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Reproductive BioMedicine
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences of Yazd
ISSN: 1680-6433
EISSN: 1680-6433
Vol. 12, No. 12, 2014, pp. 799-804
Bioline Code: rm14109
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Reproductive BioMedicine, Vol. 12, No. 12, 2014, pp. 799-804

 en Melatonin improves development of early mouse embryos impaired by actinomycin-D and TNF-α
Niknafs, Behrooz; Mehdipour, Ahmad & Roushandeh, Amaneh Mohammadi

Abstract

Background: Melatonin, a reactive oxygen species (ROS) scavenger and an antioxidant, has been shown that can inhibit apoptosis. Administration of melatonin may improve embryo development in assisted reproductive technology (ART).
Objective: The aim of this study was to evaluate the role of melatonin in inhibition of spontaneous and induced apoptosis by Tumor Necrosis Factor Alph (TNF-α) and actinomycin-D during preimplantation development of mouse embryos.
Materials and Methods: Female BALB/c mice were superovulated with pregnant mare serum gonadotropin (PMSG) followed by human chorionic gonadotropin (HCG), then allowed to mate with male mice. The resultant 2-cell embryos were divided into six groups as follows: control (group I), melatonin (group II), actinomycin-D (group III), actinomycin-D + melatonin (group IV), TNF-α (group V), and TNF-α + melatonin (group VI). We recorded the numbers and developmental rates of the 4-cell, 8-cell, morula and blastocyst embryos. Blastocysts were stained with acridine orange in order to assess for the embryo quality.
Results: The group IV showed a significantly higher developmental rate of blastocysts compared to group III (p<0.05). The number of dead blastomers was significantly decreased in group IV in comparison to group III (p<0.05). Both V and VI groups had a lower developmental rate and lesser quality of blastocysts compared with group I. There was no significant difference in the developmental rate of blastocysts from group II compared to group I (p<0.05).
Conclusion: Supplementation of embryo culture media with melatonin can improve the quality and developmental rate of embryos. Melatonin can prevent cell death that was induced by TNF-α and actinomycine-D.

Keywords
Melatonin; Embryo; Actinomycine-D; TNF-α; Development

 
© Copyright 2014 - Iranian Journal of Reproductive Medicine
Alternative site location: http://www.ijrm.ir

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil