search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Reproductive BioMedicine
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences of Yazd
ISSN: 1680-6433
EISSN: 1680-6433
Vol. 18, No. 11, 2020, pp. 943-950
Bioline Code: rm20094
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Reproductive BioMedicine, Vol. 18, No. 11, 2020, pp. 943-950

 en Characteristics of the human endometrial regeneration cells as a potential source for future stem cell-based therapies: A lab resources study
Akyash, Fatemeh; Javidpou, Mahdieh; Yazd, Ehsan Farashahi; Golzadeh, Jalal; Hajizadeh-Tafti, Fatemeh; Aflatoonian, Reza & Aflatoonian, Behrouz

Abstract

Background: Human endometrium with consecutive regeneration capability undergoes monthly hormonal changes for probable implantation, which confirms the presence of the cells in the basalis layer known as stem cell.
Objective: Previously, we reported the isolation and culture of the mesenchymal-like cells from human endometrium. In this study, we evaluated the biological and stemness characteristics of these cells.
Materials and Methods: The characterization of Yazd human endometrial-derived mesenchymal stem/stromal cells (YhEnMSCs) was assessed using immunofluorescence (IF) staining for CD105, VIMENTIN, and FIBRONECTIN as markers and RT-PCR for CD166, CD10, CD105, VIMENTIN, FIBRONECTIN, MHCI, CD14, and MHCII genes. Flow cytometry (FACS) was performed for CD44, CD73, CD90, and CD105 markers. Moreover, the differentiation capacity of the YhEnMSCs to the osteoblast and adipocytes was confirmed by Alizarin Red and Oil Red staining.
Results: YhEnMSCs expressed CD105, VIMENTIN, FIBRONECTIN, CD44, CD73, and CD90 markers and CD166, CD10, CD105, VIMENTIN, FIBRONECTIN, and MHCI, but, did not express CD14, MHCII.
Conclusion: Our data confirm previous reports by other groups indicating the application of endometrial cells as an available source of MSCs with self-renewal and differentiation capacity. Accordingly, YhEnMSCs can be used as a suitable source for cell-based therapies.

Keywords
Cell-based therapy; Endometrium; Mesenchymal stem/stromal cells; Regenerative medicine; Stem cells; Uterus.

 
© Copyright 2020 - International Journal of Reproductive BioMedicine
Alternative site location: http://www.ijrm.ir

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil