search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 5, No. 1, 2008, pp. 83-92
Bioline Code: st08010
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 5, No. 1, 2008, pp. 83-92

 en Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber
Igwe, J. C.; Abia, A. A. & Ibeh, C. A.

Abstract

As, Hg and Pb are examples of heavy metals which are present in different types of industrial effluents responsible for environmental pollution. Their removal is traditionally made by chemical precipitation, ion-exchange and so on. However, this is expensive and not completely feasible to reduce their concentrations to the levels as low as required by the environmental legislation. Biosorption is a process in which solids of natural origin are employed for binding the heavy metal. It is a promising alternative method to treat industrial effluents, mainly because of its low cost and high metal binding capacity. The kinetics was studied for biosorption experiments using coconut fiber for As (III), Hg (II) and Pb (II) ions adsorption. The specific surface area and surface charge density of the coconut fiber are 1.186x1025 (m2/g) and 5.39 x1024 (meq/m2), respectively. The maximum adsorption capacity was found to be the highest for Pb (II) followed by Hg (II) and As (III). The modification of the adsorbent by thiolation affected the adsorption capacity. Equilibrium sorption was reached for the metal ions at about 60 min. The equilibrium constant and free energy of the adsorption at 30 ºC were calculated. The mechanism of sorption was found to obey the particlediffusion model. The kinetic studies showed that the sorption rates could be described by both pseudo first-order and pseudo second-order models. The pseudo second-order model showed a better fit with a rate constant value of 1.16 x 10-4/min. for all three metal ions. Therefore, the results of this study show that coconut fiber, both modified and unmodified, is an efficient adsorbent for the removal of toxic and valuable metals from industrial effluents.

Keywords
Adsorption kinetics, intraparticulate diffusivity, heavy metal, coconut fiber, waste management

 
© Copyright 2008 Center for Environment and Energy Research and Studies (CEERS)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil