About Bioline  All Journals  Testimonials  Membership  News  Donations

International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 5, No. 3, 2008, pp. 391-400
Bioline Code: st08043
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 5, No. 3, 2008, pp. 391-400

 en Modification of thermal and oxidative properties of biodiesel produced from vegetable oils
El Diwani, G. & El Rafie, S.


Trans esterification of three vegetable oils, sunflower oil, linseed oil and mixed oils as; sunflower-soyabean and olein were carried out using methanol, and potasium hydroxide as catalyst. The methyl esters of the corresponding oils were separated from the crude glycerol and characterized by physical-chemical methods to evaluate their thermal properties. This methods are determination of densities, cloud points, pour points, flash points, kinematic viscosities, hydrogen/carbon ratios, sulfur contents, ash contents and triglycerides. The physico-chemical characteristic of biodiesel treated with ozone showed improvement of pour point and flash point indicating higher degree of safety for fuel. Methyl esters mixed with their corresponding ozonated oil were subjected to comparison and evaluation for their thermal properties by the thermo gravimetric analysis differential thermal analysis from which the calculated heat of enthalpy and comparison with the heat of conventional diesel. The results showed that the oxygen content of biodiesel samples treated with ozone increased weight % and resulted in more extensive chemical reaction, promoted combustion characteristics and less carbon residue was produced. Gas chromatography appeared more suitable to address the problem of determining/verifying biodiesel methyl ester and showed that methyl ester content was impurity free. Ultra violet-detection was used for rapid quantization of triglycerols. From the analyses performed biodiesel treated with ozone modified the thermal and oxidative stability shown by the high combustion efficiency indicated by the high heat of enthalpy and reducing the emission of particulate matter.

Renewable fuel, properties, thermal analysis, oxidative stability, ozonation

© Copyright 2008 IRSEN, CEERS, IAU
Alternative site location:

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2018, Site last up-dated on 09-Jul-2018.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil