search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 7, No. 2, 2010, pp. 359-366
Bioline Code: st10035
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 7, No. 2, 2010, pp. 359-366

 en Assessment of heavy metal pollution in soil and their implications within and around mechanic villages
Zhao, Y. C.; Yi, X. Y.; Zhang, M.; Liu, L. & Ma, W. J.

Abstract

This research describes application of laccase from white-rot fungi (polyporus) to remove dichlorodiphenyltrichloroethane in soil. The degradation kinetics of dichlorodiphenyltrichloroethane in soil was also investigated by laboratory batch experiments. The results showed that laccase from white-rot fungi can effectively degrade dichlorodiphenyltrichloroethane and the degradation of total dichlorodiphenyltrichloroethane (the sum of the four dichlorodiphenyltrichloroethane compounds in a sample) was pseudo-first-order kinetics. The residues of almost all the dichlorodiphenyltrichloroethane components and total dichlorodiphenyltrichloroethane in soils treated with laccase decreased rapidly during first 15 days and then kept at a stable level during next 10 days. The residues of total dichlorodiphenyltrichloroethane in soils with different dosages laccase decreased by about 21-32 %, 29-45%, 35-51 % and 36-51 % after 5, 10, 15 and 25 days of incubation, respectively. The half-life of total dichlorodiphenyltrichloroethane in soils with different dosages laccase ranged from 24.75 to 41.75 days. The residues of total dichlorodiphenyltrichloroethane in three different types of soils decreased by 25-29 %, 39-43 %, 44-47 % and 47-52 % after 5, 10, 15 and 25 days of incubation with laccase, respectively. The half-life of total dichlorodiphenyltrichloroethane in different types of soil ranged from 24.71 to 27.68 days. The residues of total dichlorodiphenyltrichloroethane in soils with different pH levels decreased by 18-24 %, 29-39 %, 36-39 % and 39-50% after 5, 10, 15 and 25 days of incubation with laccase, respectively. The half-life of total dichlorodiphenyltrichloroethane ranged from 25.63 to 36.42 days. Laccase can be an efficient and safe agent for remediation of dichlorodiphenyltrichloroethane-contaminated soil.

Keywords
Bioremediation; Enzyme; Half-life; Organochlorine pesticide; Residue

 
© Copyright 2010 - Center for Environment and Energy Research and Studies (CEERS)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil