search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 8, No. 2, 2011, pp. 305-320
Bioline Code: st11028
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 8, No. 2, 2011, pp. 305-320

 en Application of structural equation modeling for assessing relationships between organic carbon and soil properties in semiarid Mediterranean region
Brahim, N.; Blavet, D.; Gallali, T. & Bernoux, M.

Abstract

Restoration of atmospheric carbon in soils has principal many good effects. Arid lands cover more than 40 % of the global earth area, but only stock 16 % from the global carbon stock. It seems to be a suitable solution for this environmental issue, but still all variables controlling organic carbon in such kinds of soil, was ignored. This study aims to develop two models of organic carbon under clayey and sandy soils in semi-arid Mediterranean zones basing on physical and chemical soil properties. For establishing both models, structural equation modeling was used. For modeling organic carbon, two Tunisian soil databases composed from clayey and sandy soils made respectively, of 450 and 602 soil horizons were used. Using the two databases for all properties, the principal component analysis shows two components for clayey soil; (i) chemical properties and bulk density and (ii) physical properties. For the sandy soil it reveals two components; (i) chemical properties and (ii) physical properties. According to the derived components for each soil category, two models have been built. Structural equation modeling results show that clayey model has proved that organic carbon was controlled by chemical properties and bulk density more than physical properties and sandy model has proved that organic carbon was controlled by chemical properties more than physical properties. The root mean square errors of approximation were 0.079 and 0.050 for the clayey and sandy models, respectively. Then these two models were validated with two other databases from Tunisian dry land soils.

Keywords
Drylands; Linear causal modeling; Organic matter; Path analysis; Soil texture

 
© Copyright 2011 - Center for Environment and Energy Research and Studies (CEERS)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil