search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 9, No. 2, 2012, pp. 371-378
Bioline Code: st12038
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 9, No. 2, 2012, pp. 371-378

 en Kinetic modeling of carbon and nutrients removal in an integrated rotating biological contactor-activated sludge system
Akhbari, A.; Zinatizadeh, A.A.L.; Mohammadi, P.; Mansouri, Y.; Irandoust, M. & Isa, M.H.

Abstract

In this study, kinetics of biological carbon, nitrogen, and phosphorous removal from a synthetic wastewater in an integrated rotating biological contactor-activated sludge system was investigated. The experimental data obtained from varying four significant independent factors viz., hydraulic retention time, chemical oxygen demand for nitrogen to phosphorus ratio, internal recirculation from aerobic to anoxic zone and disks rotating speed were used for the process kinetic modeling. In order to obtain the bioprocess kinetic coefficients, Monod, first-order and Stover–Kincannon models were employed. As a result, Monod and Stover–Kincannon models were found to be the appropriate models to describe the bioprocess in the rotating biological contactor-activated sludge system as the determination coefficient for the first-order model obtained less than 0.79. According to the Monod model, growth yield, microbial decay rate, maximum specific biomass growth rate, and half-velocity constant coefficients were found to be 0.712 g VSS/g COD, 0.008/d, 5.54/d and 55 mg COD/L, respectively. From Stover–Kincannon model, the maximum total substrate removal rate constant and half-velocity constant were determined as 15.2, 10.98, 12.05 g/L d and 14.78, 7.11, 6.97 mg/L for chemical oxygen demand, nitrogen and phosphorus removal, respectively. The kinetic parameters determined in this study can be used to improve the design and operation of the biological contactor-activated sludge system in full scale.

Keywords
Nutrient removal; Monod model; First order model; Stover–Kincannon model

 
© Copyright 2012 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil