About Bioline  All Journals  Testimonials  Membership  News  Donations

International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 9, No. 3, 2012, pp. 433-440
Bioline Code: st12044
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 9, No. 3, 2012, pp. 433-440

 en Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic
Bhakta, J.N.; Munekage, Y.; Ohnishi, K.S. & Jana, B.B.


The purpose of the present study was to isolate and identify the metal-resistant lactic acid bacteria from sediments of coastal aquaculture habitats for removal of cadmium and lead from ambience. Collected sediment samples were used to isolate the cadmium- and lead-resistant bacterial colonies by spread plate technique using agar media (De Man, Rogosa and Sharpe) supplemented with cadmium or lead at 50 mg/l. Isolates were identified by bacterial colony polymerase chain reaction and sequencing of 16S ribosomal deoxyribonucleic acid. Metal removing probiotic was determined by characterizing the lactic acid yield in culture media, viability in fish intestine, metal-resistant and metal-removal efficiencies. 16S ribosomal deoxyribonucleic acid sequencing data of five (Cd10, Cd11, Pb9, Pb12 and Pb18) and other all isolates clearly showed 99 % similarities to Enterococcus faecium check for this species in other resources and Bacillus cereus check for this species in other resources , respectively. The Pb12 exhibited higher lactic acid yield (180 mmol) than that of the remaining E. faecium strains and excellent viability without pathogenicity; therefore, further study was carried out using Pb12 strain. The selected Pb12 strain showed elevated metal resistant (minimum inhibitory concentrations 120 and 800 mg/l for cadmium and lead, respectively) and removal efficiencies [Cadmium 0.0377 mg/h/g and lead 0.0460 mg/h/g of cells (wet weight)]. From the viability and metal removal points of view, it can be concluded that isolated metal-resistant E. faecium Pb12 strains might be used as potential probiotic strains for removing heavy metals from fish intestinal milieu to control the progressive bioaccumulation of heavy metals in the fish.

Bioaccumulation; Enterococcus faecium; Heavy metal; Removal efficiency; Sediment

© Copyright 2012 - Center for Environment and Energy Research and Studies (CEERS)
Alternative site location:

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2018, Site last up-dated on 17-Sep-2018.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil