search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 9, No. 4, 2012, pp. 749-758
Bioline Code: st12079
Full paper language: English
Document type: Report
Document available free of charge

International Journal of Environment Science and Technology, Vol. 9, No. 4, 2012, pp. 749-758

 en Kinetics of biodegradation of diesel fuel by enriched microbial consortia from polluted soils
Moliterni, E.; Jiménez-Tusset, R.G.; Rayo, M. Villar; Rodriguez, L.; Fernández, F.J. & Villaseñor, J.

Abstract

Three microbial consortia were isolated from three polluted soils located at an oil refinery and acclimated to grow on diesel fuel as the sole carbon source. Batch experiments were then conducted with the three consortia to study the kinetics of diesel biodegradation. The effects of temperature (25, 30 and 35 °C) and diesel concentration (0.5, 1 and 3 %) on the biodegradation of diesel were analysed. Several species were identified in the acclimated microbial consortia, and some of them appeared in more than one consortium. Thermal inhibition was observed at 35 °C. In the rest of experiments, over 80 % of the substrate was degraded after 40 h of treatment. These results proved the good feasibility of using the polluted sites as sources of mixed consortia for hydrocarbon degradation. However, diesel degradation efficiencies and rates were very similar, suggesting that the acclimation process produced mixed consortia with very similar characteristics; in this context, origin of the soil sample was not a decisive factor. A simple Monod-type kinetic model was used to simulate the biodegradation process, and accurate results were obtained. The μmax values were between 0.17 and 0.34 h-1. The results of this study revealed that the consortia can function at high concentrations of hydrocarbons without any sign of growth inhibition, which is important for the design of bioreactors for wastewater treatment with high concentrations of fuel.

Keywords
Biological treatment; Growth kinetics; Hydrocarbon; Soil pollution

 
© Copyright 2012 - Center for Environment and Energy Research and Studies (CEERS)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil