search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 10, No. 3, 2013, pp. 495-502
Bioline Code: st13050
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 10, No. 3, 2013, pp. 495-502

 en Effects of sludge pretreatment on sludge reduction in a lab-scale anaerobic/anoxic/oxic system treating domestic wastewater
Uan, D.K.; Yeom, I.T.; Arulazhagan, P. & Banu, J. Rajesh

Abstract

Excess sludge disposal is one of the serious challenges in biological wastewater treatment. Reduction of sludge production would be an ideal way to solve sludge-associated problems rather than the post-treatment of the sludge produced. In this study, a new wastewater treatment process combining anaerobic/anoxic/oxic system with thermochemical sludge pretreatment was tested in a laboratory scale experiment. In this study, the effects of the sludge pretreatment on the excess sludge production in anaerobic/anoxic/oxic were investigated. The system was operated in two Runs (1 and 2). In Run 1, the system was operated as a reference and in Run 2, a part of the mixed liquid was pretreated thermochemically and was returned to the bioreactor. The average solubilization efficiency of pretreated sludge was found to be about 35 % during the study period of 220 days. Sludge production rate in Run 2 was less than that in Run 1 by about 52 %. Total phosphorous was removed by enhanced biological phosphorous removal with the removal efficiency of 83–87 % and 81–83 % for Run 1 and Run 2, respectively. Total nitrogen removal in Run 2 (79–82 %) was slightly higher than that in Run 1 (68–75 %). The mixed liquor suspended solids/mixed liquor volatile suspended solids ratio was identical after both runs in the range 78–83 %. The effluent water qualities were not significantly affected when operated with thermochemical pretreatment at pH 11 and 60 °C for 3 h during 7 months. From the present study it is concluded that thermochemical sludge pretreatment of anaerobic/anoxic/oxic process plays an important role in reduction of sludge production.

Keywords
Anaerobic/anoxic/oxic reactor; Biological nutrient removal; Sludge reduction; Thermochemical pretreatment

 
© International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 16-Oct-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil