search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 10, No. 5, 2013, pp. 1039-1050
Bioline Code: st13100
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 10, No. 5, 2013, pp. 1039-1050

 en Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora check for this species in other resources and Pseudomonas putida check for this species in other resources
Khandare, R.V.; Kabra, A.N.; Awate, A.V. & Govindwar, S.P.

Abstract

Plants and bacterial consortium of Portulaca grandiflora check for this species in other resources and Pseudomonas putida check for this species in other resources showed complete decolorization of a sulfonated diazo dye Direct Red 5B within 72 h, while in vitro cultures of P. grandiflora and P. putida independently showed 92 and 81 % decolorization within 96 h, respectively. A significant induction in the activities of lignin peroxidase, tyrosinase, 2,6-dichlorophenol indophenol reductase and riboflavin reductase was observed in the roots of P. grandiflora during dye decolorization; whereas, the activities of laccase, veratryl alcohol oxidase and 2,6-dichlorophenol indophenol reductase were induced in the cells of P. putida. Plant and bacterial enzymes in the consortium gave an enhanced decolorization of Direct Red 5B synergistically. The metabolites formed after dye degradation analyzed by UV-Vis spectroscopy, Fourier transformed infrared spectroscopy and high performance liquid chromatography confirmed the biotransformation of Direct Red 5B. Differential fate of metabolism of Direct Red 5B by P. grandiflora, P. putida and their consortium were proposed with the help of gas chromatography-mass spectroscopy analysis. P. grandiflora metabolized the dye to give 1-(4-diazenylphenyl)-2-phenyldiazene, 7-(benzylamino) naphthalene-2-sulfonic acid, 7-aminonaphthalene-2-sulfonic acid and methylbenzene. P. putida gave 4-hydroxybenzenesulfonic acid and 4-hydroxynaphthalene-2-sulfonic acid and benzamide. Consortium showed the formation of benzenesulfonic acid, 4-diazenylphenol, 6-aminonaphthalen-1-ol, methylbenzene and naphthalen-1-ol. Consortium achieved an enhanced and efficient degradation of Direct Red 5B. Phytotoxicity study revealed the nontoxic nature of metabolites formed after parent dye degradation. Use of such combinatorial systems of plant and bacteria could prove to be an effective and efficient strategy for the removal of textile dyes from soil and waterways.

Keywords
Consortium; Decolorization; Enzymes; Metabolism; Phytoremediation

 
© 2013 - Center for Environment and Energy Research and Studies (CEERS)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil