search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 11, No. 5, 2014, pp. 1317-1326
Bioline Code: st14129
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 11, No. 5, 2014, pp. 1317-1326

 en Surface complexation model of boron adsorption by calcareous soils
Ranjbar, F. & Jalali, M.

Abstract

This study aimed to evaluate boron (B) adsorption and the capacity of a surface complexation model for simulating this process in calcareous soils. Ten surface soils were collected from different land use areas in Hamedan, Western Iran, to characterize B sorption by soils. The mean B adsorbed by the sample soils varied from 8.9 to 32.8 %. Two empirical models including linear and Freundlich equations fitted well to the experimental data. The linear distribution (Kd) values varied from 1.32 to 6.86 L kg-1, while the parameters of Freundlich equation including n and KFr ranged from 1.16 to 1.33 and 3.31–16.81, respectively. The comparison of two empirical models indicated that B adsorption followed a nonlinear pattern. The soil organic matter had positive correlations with Freundlich and linear distribution coefficients. However, empirical models were not suitable for explaining the mechanism of B adsorption, so a surface complexation model was used to simulate and predict the B adsorption process. B adsorption modeling was conducted using Visual MINTEQ and PHREEQC, based on the assemblage of major surface components (hydrous ferric oxides, aluminum hydroxides, calcium carbonate, and humic acids). B adsorption was successfully modeled by surface complexation. The significant contribution of organic matter to B complexes was resulted from both experimental data and mechanistic modeling.

Keywords
Boron; Surface complexation; Adsorption; MINTEQ; PHREEQC

 
© Copyright 2014 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 16-Oct-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil