search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 11, No. 6, 2014, pp. 1711-1722
Bioline Code: st14167
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 11, No. 6, 2014, pp. 1711-1722

 en Biosorption of ammoniacal nitrogen from aqueous solutions with low-cost biomaterials: kinetics and optimization of contact time
Mansuri, N.; Mody, K. & Basha, S.

Abstract

The biosorption of ammoniacal nitrogen (NNH4+) from aqueous solutions by dead biomass of brown seaweed Cystoseira indica and Jatropha oil cake (JOC), which is generated in the process of biodiesel recovery from its seeds, was studied under diverse experimental conditions. The N-NH4+ biosorption was strictly pH dependent, and maximum uptake capacity of C. indica (15.21 mg/g) and JOC (13.59 mg/g) was observed at initial pH 7 and 3, respectively. For each biosorbent–N-NH4+ system, kinetic models were applied to the experimental data to examine the mechanisms of sorption and potential rate-controlling steps. The generalized rate model and pseudo-second-order kinetic models described the biosorption kinetics accurately, and the sorption process was found to be controlled by pore and surface diffusion for these biosorbents. Results of four-stage batch biosorber design analysis revealed that the required time for the 99 % efficiency removal of 40 mg/L N-NH4+ from 500 L of aqueous solution were 76 and 96 min for C. indica and JOC, respectively. The Fourier transform infrared spectroscopy analysis before and after biosorption of ammonium onto C. indica and JOC revealed involvement of carboxylic and hydroxyl functional groups.

Keywords
Cystoseira indica; Jatropha oil cake; Biosorption; Ammoniacal nitrogen kinetics; Diffusion models; Optimization

 
© Copyright 2014 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil