About Bioline  All Journals  Testimonials  Membership  News  Donations

International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 11, No. 7, 2014, pp. 1869-1880
Bioline Code: st14183
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 11, No. 7, 2014, pp. 1869-1880

 en Site-specific pre-evaluation of bioremediation technologies for chloroethene degradation
Patil, S.S.; Adetutu, E.M.; Sheppard, PJ.; Morrison, P.; Menz, I.R. & Ball, A.S.


Groundwater systems are important sources of water for drinking and irrigation purposes. Unfortunately, human activities have led to widespread groundwater contamination by chlorinated compounds such as tetrachloroethene (PCE). Chloroethenes are extremely harmful to humans and the environment due to their carcinogenic properties. Therefore, this study investigated the potential for bioremediating PCE-contaminated groundwater using laboratory-based biostimulation (BS) and biostimulation– bioaugmentation (BS-BA) assays. This was carried out on groundwater samples obtained from a PCE-contaminated site which had been unsuccessfully treated using chemical oxidation. BS resulted in complete dechlorination by week 21 compared to controls which had only 30 % PCE degradation. BS also led to a approximately threefold increase in 16S rRNA gene copies compared to the controls. However, the major bacterial dechlorinating group, Dehalococcoides check for this species in other resources (Dhc), was undetectable in PCE-contaminated groundwater. This suggested that dechlorination in BS samples was due to indigenous non-Dhc dechlorinators. Application of the BS-BA strategy with Dhc as the augmenting organism resulted in complete dechlorination by week 17 with approximately twofold to threefold increase in 16S rRNA and Dhc gene abundance. Live/dead cell counts (LDCC) showed 70–80 % viability in both treatments indicating active growth of potential dechlorinators. The LDCC was strongly correlated with cell copy numbers (r > 0.95) suggesting its potential use for low-cost monitoring of bioremediation. This study also shows the dechlorinating potential of indigenous non-Dhc groups can be successfully exploited for PCE decontamination while demonstrating the applicability of microbiological and chemical methodologies for preliminary site assessments prior to field-based studies.

Chlorinated compounds; Biostimulation; Bioaugmentation; Quantitative PCR; Cell viability

© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location:

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2018, Site last up-dated on 17-Sep-2018.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil