search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 12, No. 2, 2015, pp. 465-472
Bioline Code: st15041
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 2, 2015, pp. 465-472

 en Iron recovery from the waste generated during the cutting of granite
Junca, E.; de Oliveira, J.R.; Espinosa, D.C.R. & Tenório, J.A.S.

Abstract

Metallic iron is present in the waste left when granite blocks are cut. Thus, the purpose of this study was to characterize this waste using chemical and particle size analyses. To achieve this, X-ray diffraction and scanning electron microscopy coupled with electron back-scattered diffraction were used. To find the method with the best metallic iron recovery from the waste of ornamental rock, three distinct methods were examined: magnetic separation, table concentration and cyclone processing. The first method involved three steps: (1) use of a wet high-intensity magnetic separator, where only the equipment’s remaining magnetic field was present; (2) the material from the first step was then submitted to separation again, this time using a magnet for rare earth particles; and (3) this material after two separation processes was finally submitted to ferromagnetic separation. The second method used a concentration table set at various inclinations, oscillation frequencies and wash flow rates. Meanwhile, for the third method, the cyclone tests, only the water pressure was varied. After each test, a chemical analysis was performed to determine the metallic iron present in each sample. The tests revealed that magnetic separation presents the best results. Using this technique, a ferrous concentrate with 93 % metallic iron content and a granite concentrate with only 0.6 % metallic iron were obtained. On the other hand, in the table concentrator tests, the ferrous concentrate only had a metallic concentration of 13.6 %. In separation by the cyclone processing, the product barely contained metallic iron (7.2 % maximum).

Keywords
Granite waste; Solid waste; Recycling; Waste management

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil