search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 12, No. 2, 2015, pp. 683-692
Bioline Code: st15062
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 2, 2015, pp. 683-692

 en Removal of lead from aqueous solutions by electrocoagulation: isotherm, kinetics and thermodynamic studies
Kamaraj, R.; Ganesan, P. & Vasudevan, S.

Abstract

The present study provides an electrocoagulation process for the removal of lead from water using magnesium and galvanized iron as anode and cathode, respectively. The various operating parameters such as the effect of initial pH, current density, electrode configuration, inter-electrode distance, co-existing ions and temperature on the removal efficiency of lead were studied. The results showed that the maximum removal efficiency of 99.3 % at a pH of 7.0 was achieved at a current density 0.8 A/dm2 with an energy consumption of 0.72 kWh/m3. The experimental data were fitted with several adsorption isotherm models to describe the electrocoagulation process. The adsorption of lead preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. In addition, the adsorption kinetic studies showed that the electrocoagulation process was best described using the second-order kinetic model at various current densities. Thermodynamic parameters, including the Gibbs free energy, enthalpy and entropy, indicated that the lead adsorption of water on magnesium hydroxides was feasible, spontaneous and endothermic.

Keywords
Electrocoagulation; Heavy metal; Adsorption; Kinetics; Thermodynamics

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil