search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 12, No. 3, 2015, pp. 959-966
Bioline Code: st15087
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 3, 2015, pp. 959-966

 en Preparation of porous carbon from date palm seeds and process optimization
Reddy, K. S. K.; Shoaibi, A. Al & Srinivasakannan, C.

Abstract

The agricultural wastes like date palm seeds to be a suitable precursor for the preparation of porous carbon has been explored in the present work, utilizing phosphoric acid as the activating agent. The experimental methods reported in literature were chosen with certain modification in order to simplify the process. The process optimization was performed using the popular response surface methodology adopting a Box-Behnken design. Process optimization was performed to maximize the porous carbon Brunauer–Emmett–Teller (BET) surface area and the methylene blue (MB) adsorption capacity, with the process variables being the activation temperature, impregnation ratio (IR) and the activation time. The textural characteristics were assessed based on nitrogen adsorption isotherms, scanning electron microscopy, while the adsorption capacity was estimated using the MB adsorption. The optimized experimental conditions were identified to be an activation temperature of 500 °C, IR of 3.1 and activation time of 71.4 min, with the resultant porous carbon having BET surface area of 846.7 m2/g and MB adsorption capacity of 445.7 mg/g. The popular Langmuir and Freundlich adsorption isotherm models were tested, and a maximum monolayer adsorption capacity of the MB was estimated to be 345 mg/g, which compares with the highest of MB reported in literature, evidencing the suitability of the porous carbon for adsorption of macro-molecular compounds.

Keywords
Porous carbon; Methylene blue; BET surface area; Optimization

 
© Copyright 2013 - Islamic Azad University (IAU)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil