search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 12, No. 4, 2015, pp. 1173-1182
Bioline Code: st15107
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 4, 2015, pp. 1173-1182

 en Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal
Yang, H.; Masse, S.; Rouelle, M.; Aubry, E.; Li, Y.; Roux, C.; Journaux, Y.; Li, L. & Coradin, T.

Abstract

Magnetite–hydroxyapatite nanocomposites were prepared by in situ precipitation of the calcium phosphate phase in an iron oxide colloidal suspension. Homogeneous magnetic powders were obtained with iron oxide content up to 50 wt%, without perturbation of the magnetite structure nor formation of additional calcium phosphates. The surface area of the composite powder was significantly increased after incorporation of magnetite due to the better apatite particle dispersion. This results in an increased available reactive surface, favoring lead sorption and hydroxypyromorphite precipitation, both leading to an enhanced lead removal capacity of the composite materials. The magnetic properties of magnetite nanocrystals were preserved upon association with hydroxyapatite. Full recovery of the composite powder after lead removal could be achieved using a simple magnet at a relatively low iron oxide content (20 wt%). This indicates a strong interaction between hydroxyapatite and magnetite particles within the composite powder. The procedure is simple, easily scalable and involves only environmental friendly materials.

Keywords
Hydroxyapatite; Magnetic materials; Nanoparticles; Lead

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil