search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 12, No. 6, 2015, pp. 2035-2042
Bioline Code: st15189
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 6, 2015, pp. 2035-2042

 en Minimization of phosphorus in the fermentation media of Escherichia coli check for this species in other resources producing a model recombinant protein
Witt, M. K.; O’Dwyer, T. F. & Walsh, G.

Abstract

In the biotechnology sector, a main processing goal is the production of high cell (and hence product) yields. Therefore, little consideration is traditionally given to the potential environmental impacts of excess culture media ingredients. This study investigated the scope for reducing the quantities of phosphorus (P) present in both a complex terrific broth (TB) and semi-defined minimal media 9/yeast extract (M9/YE) fermentation media used to culture a model Escherichia coli check for this species in other resources strain engineered to produce a recombinant β-galactosidase. Reductions of up to 70 % did not adversely affect biomass yields attained; however, further P minimization leads to a drop in dry cell weight obtained, particularly in the case of semi-defined media. P concentration in TB media had little effect upon total recombinant protein expression levels achieved. In the case of M9/YE media, reductions >70 % P negatively affected product expression levels. Protein functionality, assessed by km and Vmax, was not influenced by the type of media nor the P concentration present. Overall, the results indicate that P can be reduced by a minimum of 70 % without adversely affecting the biomass yield, the recombinant protein yield or functionality. Such reductions should lead to significant P savings in the large-scale manufacturing of proteins produced by genetic engineering in E. coli.

Keywords
Phosphorus; Eutrophication; Waste minimization; Biopharmaceutical

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil