search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-2630
Vol. 12, No. 9, 2015, pp. 2777-2790
Bioline Code: st15260
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 9, 2015, pp. 2777-2790

 en Determination of aerosol deliquescence and crystallization relative humidity for energy saving in free-cooled data centers
Ferrero, L.; D’Angelo, L.; Rovelli, G.; Sangiorgi, G.; Perrone, M. G.; Moscatelli, M.; Casati, M.; Rozzoni, V. & Bolzacchini, E.

Abstract

This study examines an innovative application of the aerosol deliquescence and crystallization determination, for corrosion prevention and energy-saving strategies in free-cooled data centers. Aerosol deliquescence and crystallization were investigated by combining standardized aerosol sampling techniques (i.e. EN-14907) with the assessment of the electrical effects of aerosol, while varying relative humidity within a specially designed aerosol exposure chamber. Aerosol samples collected in the Po Valley (Northern Italy) were analysed; a clearly defined hysteresis cycle (deliquescence and crystallization at 60.5 ± 0.8 and 47.9 ± 0.7 % of RH, respectively) was found. Results were applied to a data center designed for the Italian National Oil and Gas Company, making it possible to identify a critical area for direct free cooling at this data center. As a result, aerosol hydration was avoided (thus preventing aerosol from damaging electrical components) and a large amount of energy saved (using free cooling instead of air-conditioning); the potential energy saving achieved in this way was 79 % (compared to the energy consumption of a traditional air-conditioning system): 215 GWh of energy was saved, and 78 fewer kt of equivalent CO2 was emitted per year. Moreover, in order to evaluate whether a real-time estimation of the aerosol hydration state within a data center could be performed, measured deliquescence and crystallization were compared through simulations performed using three different models: two thermodynamic models for deliquescence and a parametric model for crystallization. The results obtained tend to converge in terms of deliquescence, whereas in the case of crystallization, they failed to effectively simulate experimental aerosol behaviour.

Keywords
Conductivity; Aerosol chamber; Hygroscopicity; Models; Energy; Carbon footprint

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 16-Oct-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil