search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 12, No. 9, 2015, pp. 2857-2866
Bioline Code: st15268
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 12, No. 9, 2015, pp. 2857-2866

 en The ability of immobilized bacterial consortia and strains from river biofilms to degrade the carbamate pesticide methomyl
Chen, C. S.; Wu, T.-W.; Wang, H.-L.; Wu, S.-H. & Tien, C.-J.

Abstract

Complex microbial communities from river biofilms might contain microorganisms capable of degrading xenobiotic pollutants such as pesticides (e.g. methomyl, which is commonly detected in rivers). Therefore, this study was used to determine the methomyl degradation potential of bacteria consortia and single bacterial strains acclimatized and isolated from natural river biofilms to provide biomaterials for bioremediation of water that is contaminated with methomyl. Natural river biofilms were culture enriched with methomyl as the sole carbon source to obtain acclimatized bacterial consortia and single bacterial strains. The microbial consortium on the ceramic discs was able to remove 91 % of added methomyl (50 mg l-1) in 7 days. The longer-acclimatized bacterial consortium on loofah sponges removed methomyl more quickly than the shorter-acclimatized consortium, but both had similar removal capabilities (i.e. 92.4 and 92.2 %). This finding suggested that the former might contain more methomyl degraders than the latter. However, after preservation at 25, 4 and -20 ºC for 1 or 3 months, the methomyl degradation ability of the bacterial consortia decreased significantly, indicating loss of methomyl degraders during preservation. Three bacterial species were isolated from acclimatized river biofilms, and only one species, identified as Sphingomonas check for this species in other resources sp., was able to remove methomyl, with a 7-day removal rate of 44.7 % when sugar was added and of 32.5 % when no sugar was added. These results suggested that an additional carbon source might slightly improve the ability of Sphingomonas sp. to degrade methomyl. Acclimatized bacterial consortia have a higher potential for treating methomyl-contaminated water than isolated bacterial species.

Keywords
Bacteria; Degradation; Methomyl; Preservation; River biofilm

 
© Copyright 2015 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil