search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 13, No. 3, 2016, pp. 825-834
Bioline Code: st16078
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 13, No. 3, 2016, pp. 825-834

 en Development of attapulgite composite ceramsite/quartz sand double-layer biofilter for micropolluted drinking source water purification
Wang, Z.; Zhong, M. G.; Wan, J. F.; Xu, G. J. & Liu, Y.

Abstract

This study compared start-up and steady-state affecting factors of attapulgite composite ceramsite/quartz sand double-layer biofilter (ACC/QSDLBF) and quartz sand single-layer biofilter (QSSLBF) on micropolluted drinking source water treatment. Results showed that the ACC has suitable pore size distribution in the range of 5–850 nm which is conducive to biofiltration. Turbidity removal efficiency of ACC/QSDLBF was a little lower than QSSLBF, but organic matters and ammonia removal efficiencies of ACC/QSDLBF were much higher than QSSLBF due to biodegradation and nitrification by microorganisms colonizing on the ACC. At stable state, the growth of head loss for ACC/QSDLBF was lower than that of QSSLBF. The complete filtration cycle of ACC/ QSDLBF was 52 h. The total CODMn removal rate of ACC/QSDLBF was 20.93 %, in which 90 % of removed total CODMn was achieved at the upper 60 cm of ACC filter layer. The removal of CODMn decreased from 35.89 to 13.16 % in ACC/QSDLBF when increasing hydraulic loading from 2 to 16 m/h. After analysis of efficient EBCT in ACC/QSDLBF, optimized hydraulic loading was 12 m/ h. These conclusions would be helpful to practical application of ACC as functional material for new construction of waterworks, especially upgrading of existing waterworks treating micropolluted drinking source water.

Keywords
Attapulgite composite ceramsite; ACC/ QSDLBF; Biofiltration; Start-up; Affecting factors; Efficient EBCT (EEBCT)

 
© Copyright 2016 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil