search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 13, No. 6, 2016, pp. 1497-1504
Bioline Code: st16141
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 13, No. 6, 2016, pp. 1497-1504

 en Comparison of different phases of bismuth silicate nanofibers for photodegradation of organic dyes
Batool, S. S.; Hassan, S.; Imran, Z.; Rasool, K.; Ahmad, M. & Rafiq, M. A.

Abstract

Two different phases of bismuth silicate nanofibers [Bi2SiO5 and Bi4(SiO4)3] were synthesized using electrospinning technique. BS nanofibers were tested for the photocatalytic degradation of methyl orange and safranin O dyes. Different phases of BS affect the photodegradation efficiency of nanofibers. Impressive enhancement in photocatalytic efficiency and BET surface area of Bi4(SiO4)3 was observed over Bi2SiO5. A speedy reduction in dyes concentration was attributed to the rapid formation of oxygenated radicals by the capture of electrons and holes, generated in the BS nanofiber by UV irradiation. Therefore, the photocatalytic mechanism was elucidated using impedance spectroscopy at room temperature. The lower impedance value of Bi4(SiO4)3 nanofibers had improved high-efficiency charge transfer capability. The cycling efficiency (30 times) and recovery characteristics pointed out that Bi4(SiO4)3 nanofibers photocatalysts had high constancy, resilience, and regeneration ability.

Keywords
Bi4(SiO4)3 nanofibers; Crystal phases; Electrospinning; Photocatalytic activity

 
© Copyright 2016 - Islamic Azad University
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil