search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 13, No. 8, 2016, pp. 1891-1916
Bioline Code: st16176
Full paper language: English
Document type: Research Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 13, No. 8, 2016, pp. 1891-1916

 en Empirical and mechanistic evaluation of sodium exchange isotherms on natural mineral and organic adsorbents and organically functionalized nanoparticles
Ranjbar, F. & Jalali, M.

Abstract

This study was conducted to evaluate the efficiency of low-cost adsorbents including bentonite, kaolinite and zeolite saturated with calcium and potassium, potato and wheat residues, and three metal oxide nanoparticles functionalized with an acidic extract of potato residues in improving the quality of sodic waters. The optimization of factors such as pH, contact time, and adsorbent dosage was investigated using a solution containing sodium, calcium, magnesium, and potassium. The optimal pH and contact time were 7.0 and 24 h, respectively. The optimal dosage for using functionalized nanoparticles was 0.1 g and for using other adsorbents was 1.0 g. The sodium exchange isotherms were conducted in binary sodium–calcium and sodium–potassium and quaternary sodium–calcium–magnesium–potassium systems. Zeolite saturated with potassium was the most effective adsorbent in removing sodium from aqueous solutions with an average removal efficiency of 69.2 and 66.5 % in binary and quaternary systems, respectively. Freundlich and Langmuir equations fitted well to experimental data in both binary and quaternary systems. Cation selectivity coefficients calculated based on the Gaines–Thomas convention varied with changing pH and adsorbent dosage. Graphical and statistical evaluations confirmed that the mechanistic cation exchange model using average Gaines–Thomas selectivity coefficients in geochemical PHREEQC program was able to successfully simulate the sodium exchange on different adsorbents in both systems. The Gaines–Thomas selectivity coefficient values greater than unity and as a consequence, the negative values of the Gibbs free energy change of adsorption indicated that sodium exchange reactions in the presence of different adsorbents used is this study were exergonic and spontaneous.

Keywords
Sodium exchange isotherm; Functionalized nanoparticles; PHREEQC; Sodic waters; Mechanistic simulation; Agricultural residues

 
© Copyright 2016 - Islamic Azad University (IAU)
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil