search
for
 About Bioline  All Journals  Testimonials  Membership  News


International Journal of Environment Science and Technology
Center for Environment and Energy Research and Studies (CEERS)
ISSN: 1735-1472
EISSN: 1735-1472
Vol. 13, No. 9, 2016, pp. 2163-2174
Bioline Code: st16200
Full paper language: English
Document type: Special Article
Document available free of charge

International Journal of Environment Science and Technology, Vol. 13, No. 9, 2016, pp. 2163-2174

 en Interactive effects of cadmium and copper on metal accumulation, oxidative stress, and mineral composition in Brassica napus check for this species in other resources
Mwamba, T. M.; Ali, S.; Ali, B.; Lwalaba, J. L.; Liu, H.; Farooq, M. A.; Shou, J. & Zhou, W.

Abstract

Heavy metals’ frequent occurrence and toxicity caused considerable concerns in assessing the interactive effects of metals on exposed plants. Therefore, a hydroponic study was conducted to assess the growth response and physio-chemical changes in Brassica napus plants under single and combined stress of two environmentally alarming metals (Cd and Cu). Results showed that 15-day metal exposure to different metal concentrations (0, 50, 200 µM) significantly enhanced Cd accumulation, while lesser extent of Cu was observed in plant tissues. Nonetheless, Cu caused more pronounced oxidative damages and plant growth retardation. Both metals showed similar trend of changes in mineral composition, although Cu proved more damaging effect on K and Mn contents, and Cd on Zn contents. In combined treatments, Cd stimulated Cu uptake, notably at low concentration, while its own uptake was restricted by the presence of Cu. At either level of concentration, combined stress of these metals exacerbated plant growth inhibition and caused further oxidative damages compared to their individual stress. However, metals synergistic effects occurred only in conditions where Cu uptake was enhanced by Cd. A greater synergistic effect was observed in sensitive cultivar Zheda 622 as compared to the tolerant cultivar ZS 758. As to mineral composition, no metals synergistic effects were noted. This study highlighted the ecotoxicological significance of Cd-led Cu uptake in B. napus, which was assumed to drive metals’ synergistic toxicity, and showed that the relationship between Cd-led Cu uptake and plant growth responses could vary with respect to cultivar.

Keywords
Accumulation; Brassica napus L.; Cadmium; Copper; Interaction; Synergistic effects

 
© Copyright 2016 - International Journal of Environment Science and Technology
Alternative site location: http://www.ijest.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2025, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil