search
for
 About Bioline  All Journals  Testimonials  Membership  News


Zoological Research
Kunming Institute of Zoology, Chinese Academy of Sciences
ISSN: 2095-8137
Vol. 32, No. 1, 2011, pp. 31-39
Bioline Code: zr11006
Full paper language: Chinese
Document type: Research Article
Document available free of charge

Zoological Research, Vol. 32, No. 1, 2011, pp. 31-39

 en Expression of cannabinoid and opioid receptors in nervous as well as immune systems of Macaca mulatta check for this species in other resources and Tupaia belangeri check for this species in other resources
Zhang, Qing-Yu; Fan, Xiao-Na & Cao, Yi

Abstract

To make Macaca mulatta check for this species in other resources and Tupaia belangeri check for this species in other resources as experimental animals for studying functions of opioid and cannabinoid receptors in drug addiction, we examined expression of the opioid and cannabinoid receptors in nervous and immune system of the two animals. We dissected normal adult M. mulatta and T. belangeri, collected tissues of cortex, cerebellum, brain stem, hippocampus, spinal cord, and spleen, and then applied the semi-quantitative PCR and real-time quantitative PCR methods to investigate the mRNA expression levels of the opioid and cannabinoid receptors in these tissues. In M. mulatta, the cannabinoid receptor 1 (CNR1) mRNA was expressed in the all tissues; in contrast, the cannabinoid receptor 2 (CNR2) mRNA was only present in the spleen. The mu opioid receptor (MOPR) was detected in all tissues, and the kappa opioid receptor (KOPR) was found in the cortex, cerebellum, brain stem, and spinal cord, but not in hippocampus and spleen. However, the delta opioid receptor (DOPR) was restrictively expressed in the hippocampus. In T. belangeri, CNR1 and CNR2 were expressed in the five regions of the brain. CNR2, but no CNR1, was also detected in the spleen. MOPR was expressed in all examined tissues, and its expression levels in the brain were higher than that in the spleen. DOPR and KOPR were not found in all tissues. Taken together, the expression profiles of cannabinoid receptors in human being, M. mulatta, T. belangeri, and rat were similar, and the expression patterns of the opioid receptors in M. mulatta were more close to human beings. The opioid and cannabinoid receptors were expressed in the tissues of nervous and immune systems of M. mulatta and T. belangeri, and both animals could be used for studying drug addiction. Macaca mulatta is still the best experimental animal for drug addiction research because it shows very similar expression profiles of these receptors to human beings.

Keywords
Macaca mulatta, Tupaia belangeri, Cannabinoid receptor, Opioid receptor, mRNA expression, Nervous system; Immune system

 
© Copyright 2011 Kunming Institute of Zoology, the Chinese Academy of Sciences
Alternative site location: http://www.zoores.ac.cn/

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil