search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Zoological Research
Kunming Institute of Zoology, Chinese Academy of Sciences
ISSN: 2095-8137
Vol. 35, No. 6, 2014, pp. 500-509
Bioline Code: zr14060
Full paper language: English
Document type: Research Article
Document available free of charge

Zoological Research, Vol. 35, No. 6, 2014, pp. 500-509

 en Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice
LIU, Hui-Hua; HUANG, Cai-Fei & WANG, Xin

Abstract

Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse ( Mus musculus check for this species in other resources ). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization.

Keywords
Ventral nucleus of the lateral lemniscus; Firing pattern; Frequency tuning; Intensity tuning; Mouse

 
© Copyright 2014 - Zoological Research
Alternative site location: http://www.zoores.ac.cn/

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 05-Dec-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil