search
for
 About Bioline  All Journals  Testimonials  Membership  News  Donations


Zoological Research
Kunming Institute of Zoology, Chinese Academy of Sciences
ISSN: 2095-8137
Vol. 36, No. 6, 2015, pp. 314-318
Bioline Code: zr15036
Full paper language: English
Document type: Review Article
Document available free of charge

Zoological Research, Vol. 36, No. 6, 2015, pp. 314-318

 en Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing
Wang, Min & Arnsten, Amy F. T.

Abstract

Revealing how molecular mechanisms influence higher brain circuits in primates will be essential for understanding how genetic insults lead to increased risk of cognitive disorders. Traditionally, modulatory influences on higher cortical circuits have been examined using lesion techniques, where a brain region is depleted of a particular transmitter to determine how its loss impacts cognitive function. For example, depletion of catecholamines or acetylcholine from the dorsolateral prefrontal cortex produces striking deficits in working memory abilities. More directed techniques have utilized direct infusions of drug into a specific cortical site to try to circumvent compensatory changes that are common following transmitter depletion. The effects of drug on neuronal firing patterns are often studied using iontophoresis, where a minute amount of drug is moved into the brain using a tiny electrical current, thus minimizing the fluid flow that generally disrupts neuronal recordings. All of these approaches can be compared to systemic drug administration, which remains a key arena for the development of effective therapeutics for human cognitive disorders. Most recently, viral techniques are being developed to be able to manipulate proteins for which there is no developed pharmacology, and to allow optogenetic manipulations in primate cortex. As the association cortices greatly expand in brain evolution, research in nonhuman primates is particularly important for understanding the modulatory regulation of our highest order cognitive operations.

Keywords
Lesion; Microinfusion; Iontophoresis; Viral manipulations; Systemic administration

 
© Copyright 2015 - Zoological Research
Alternative site location: http://www.zoores.ac.cn/

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2017, Site last up-dated on 16-Oct-2017.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Internet Data Center of Rede Nacional de Ensino e Pesquisa, RNP, Brazil