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Selections via the mixed model and the multivariate 
analysis approach can be powerful tools for selecting 
cultivars in plant breeding programs. Therefore, this study 
aimed to compare the use of mixed models, multivariate 
analysis and traditional phenotypic selection to identify 
superior maize (Zea mays L.) genotypes. Seventy-one 
(71) maize Topcrosses and three commercial cultivars 
were evaluated using these three methods. Plant height, 
ear height, ear placement, stalk lodging and breakage, 
and grain yield were evaluated. There was a difference 
between selection methods, as the selection with mixed 
models and the selection based on the average phenotypic 
afforded the inclusion of genotypes with high productivity, 
which did not occur for the multivariate analysis. The 
selection by multivariate analysis allowed the inclusion 
of genotypes with better agronomic and other desirable 
traits, not only those with highest productivity, in a maize 
breeding program. 
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INTRODUCTION

The main objective of plant breeding programs is the 
development of marketable cultivars, and success depends on 
applying appropriate selection methods to available genotypes. 
For this process, selections by mixed models focusing on 
multivariate analyses are powerful tools for selecting cultivars. 
 For mixed models, the Best Linear Unbiased Predictor 
(BLUP) is near the phenotypic average observed for the true 
genotypic value of the individual, which is a property of an 
accurate estimator (Piepho et al., 2008). BLUP can be used for 
both the selection of superior individuals and the estimation of 
future generations’ gains. This allows selection for precocity, thus 
making possible crossings of only individuals that are promising 
for the characteristic of interest (Cruz Baldissera et al., 2012). 
On the other hand, truncated selection, where characteristics 
are selected for one at a time, may compromise the flexibility 
of the breeding program. Thus, multivariate analyses, besides 
combining various data from a single experiment (Gonçalves 
et al., 2014), can contribute to the robustness of the selection 
(Magalhães Bertini et al., 2010).
 Multivariate analysis refers to a broad category of methods 
used when different variables are measured in a single set of 
experimental data (Yeater et al., 2014). Among multivariate 
analyses is the cluster analysis, which seek to minimize the 
differences within groups and maximize the differences between 
clusters. Therefore, the objective of this study was to compare the 
application of mixed models, multivariate analysis and traditional 
phenotypic selection to identify superior genotypes of maize. 

MATERIALS AND METHODS

The study was conducted over the harvests of 2012-2013 and 
2013-2014, with the evaluation of 71 maize Topcrosses and 
three commercial cultivars at the experimental farm of the 
College of Agriculture and Veterinary Sciences of Universidade 
Estadual Paulista (UNESP), Jaboticabal (21°15’17” S, 
48°19’20” W; 605 m a.s.l.), São Paulo, Brazil. 
 The design was randomized blocks with two replicates. The 
plots consisted of two 5-m-long rows, spaced 0.50 m apart, with 
18 plants in each row, for an ideal stand of 36 plants per plot. The 
evaluated characteristics were: ear height (EH, cm) measured as 
the distance from the ground to the insertion point of the main 
ear; plant height (PH, cm) measured as the distance from the 
ground to the flag leaf; ear position (EP) as the ratio between ear 
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height and plant height; grain yield (GY, kg ha-1) obtained 
from the average weight of the useful grains; and stalk 
lodging and breakage (SLB) estimated by the number of 
broken plants (plants with breakage in the stem below the 
ear), fallen plants, and those plants growing at less than a 
45° angle. Grain production was corrected to 13% moisture 
and adjusted by the average stand for covariance (Silva et 
al., 2014), converting it to kg ha-1.
 Phenotypic selection was performed using the average 
obtained from the joint variance of the 2 yr evaluation, 
selecting the 20 best genotypes for productivity. For the 
mixed model selection, both environments were considered 
in joint analysis for extracting the BLUP’s of all genotypes, 
which were then ordered by the 20 best genetic values 
(BLUP) for productivity (GY).
 The linear mixed model used was:

y = X β + Z1g + Z2w + ε
where y is the vector of phenotypic observations; β is the 
vector of fixed effects due to the blocks, local, and general 
average; g is the vector of the effects of the assumed 
random genotypes; w is the vector of the effects of the 
interaction of Genotype × Environment (random); X, Z1, 
and Z2 are incidence matrices of these effects, and ε is the 
vector of random residues. 
 Whereas the BLUE model for β and BLUP for the 
random effects g and w are given in the following mixed 
model equation: 

The estimates of variance components necessary to obtain 
the subjects’ genetic values (BLUP) were determined using 
the restricted maximum likelihood (REML) method. The 
confidence intervals for the averages were estimated by:

IC = u ± t.sdaf
where u is the average of the family, t is the tabulated value 
of the “t” student distribution at 5% probability, and sdaf is 
the standard deviation of the average family. 
 The non-hierarchical, multivariate K-means cluster 
analysis was carried out to find the shortest distance 
between the genotypes and select the superior genotypes 
closest to the commercial cultivars. Because of the high 

number of genotypes, K = 5 was stipulated, the number of 
groups was chosen a priori according to the assumption for 
the separation of clusters (Kanungo et al., 2002; Nazeer and 
Sebastian, 2009).
 This tool selected genotypes from the commercial 
hybrids and/or genotypes that showed good agronomic 
attributes according to the analyzed variables. All analyses 
were performed using SAS (SAS Institute, Cary, North 
Carolina, USA).

RESULTS AND DISCUSSION

The genotypes differed for all traits and environments 
(Table 1), indicating that, although grown in the same place, 
cultivation in different crops was sufficient to influence 
the genotypes. The overall average grain yield in both 
environments was 8208.65 kg ha-1. Therefore, the genotypes 
presented high productivity estimates, since average 
productivity in Brazil is about 4.2 t ha-1 (Lyra et al., 2014). 
The variation coefficients for all variables were within 
the normal range, revealing good experimental precision 
(Hallauer et al., 2010; Fritsche-Neto et al., 2012). 
 There was Genotypes × Environments interaction for 
all traits except ear height and ear placement. Thus, these 
results indicate that there is variability between individuals, 
environments were contrasting, and the selection made 
considering both genotypes and environments together will 
provide gains generated from contrasting environments with 
the genotypes becoming more adapted and stable. 
 For the selection, it is important to consider that 
according to the amplitudes, there was high variability 
among individuals (Table 2). The top 20 genotypes selected 
by joint analysis were the same as those selected via mixed 
models (Table 2). This indicates that with respect to the 
true genetic value of individuals, the averages estimated 
by the least squares method were sufficiently precise, even 
when considering the effect of genotypes as fixed and 
making changes in the ranking of genotypes. However, 
in the mixed model analysis, there was a reduction in the 
variation range of the genotypes (2660.94 kg ha-1). This 
difference is due to the shrinkage effect inherent in BLUP, 
which eliminates residual effects embedded in phenotypic 
data, thereby providing data for genetic and non-

MS: Mean squares, DF: degree of freedom, GY: Grain yield, PH: plant height, EH: ear height, EP: ear placement, SLB: stalk lodging and breakage, CV: 
experimental coefficient of variation, ns: nonsignificant by F test.
*, **Significant at the 0.05 and 0.01 probability levels, respectively by F test.
+Value multiplied by 1000. 

Table 1. Summary of the analysis of joint variance of five agronomic traits in 74 evaluated maize genotype.

Genotype (G) 73 3112.32** 242.82** 122.98** 1.58** 0.64**

Environment (E) 1 2614147.48** 28346.39** 1352.22** 65.40** 9.48**

G × E  73 1473.91* 124.89** 63.46ns 0.28ns 0.37*

Residual  145 1014.57 78.83 51.55 0.38 0.26

CV, %  12.27 3.78 5.31 3.40 37.39
Average  8208.65 234.58 134.99 0.57 1.36

Amplitude  5047.74 43.07 32.34 0.09 1.52

Variation sources DF
MS

GY (kg ha-1) PH (cm) EH (cm) +EP SLB

X’ R-1 X X’ R-1 Z1 X’ R-1 Z2 β  X’ R-1 y
Z’1 R-1 X Z’1 R-1 Z1 + G-1 Z’1 R-1 Z2 g = Z’1 R-1 y
Z’2 R-2 X Z’2 R-1 Z1 Z’2 R-1 Z2 + W-1 w  Z’2 R-1 y
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phenotypic selection similar to that which occurs in a least-
squares analysis (Resende, 2007). In addition, it confirms 
the efficiency of least squares with respect to mixed models 
for balanced information.  
 The prediction of genotypic values for grain yield, 
based on the effect of the families for the 20 best evaluated 
genotypes via BLUP are listed in Table 2. According to 
Arnhold et al. (2009), it is better to use the mixed model 
methodology for breeding programs and BLUP is preferable 
to BLUE, as BLUP can be used to estimate the breeding 
values of individuals.
 Out of the top 20 genotypes, the three commercial hybrids 
outperformed the general average with the highest yields 
(Table 2). However, when the overlap of the confidence 
intervals of the mean yield is considered (Table 1), it was 
possible to obtain genotypes with higher productivity 
than the general average and similar to the commercial 
controls. This reveals the existence of genotypes with high 
yielding potential for inclusion in breeding programs, but 
assessments in different locations are needed for additional 
studies of adaptability and stability. 
 Rivas and Barriga (2002) discuss the importance 
of choosing the parents for superior combinations in 
breeding programs. The choice of these parents can be 
through the genotypes’ combining ability, which provides 

information for obtaining crosses for improving the various 
characteristics of interest (Arnhold et al., 2009). 
 In the multivariate analysis selection, it was possible 
to characterize the genotypes into five groups through the 
K-means method (Table 3, Figure 1). 
 Group 1 contained approximately 8% of genotypes and 
had the highest average plant and ear height (247.5 and 
145.78 cm, respectively) (Table 3). Theoretically, these 
genotypes will have an increased tendency for stalk lodging 
and breakage because the ears are higher on the stalk 
(Figure 1). It is important to remember that in breeding 
experiments, the harvesting is often manually done, with 
broken and lodged plants being harvested, and thus, it is 
possible to account for the productivity of these genotypes. 
However, this would not occur with mechanical harvesting, 
despite the positive correlation between productivity and 
plant height (Yin et al., 2011). 
 Group 2 was made up of the commercial cultivars and an 
additional five genotypes (approximately 10% of genotypes). 
It had the highest grain yields and less lodging, revealing 
smaller sized candidates for genotype breeding programs 
(Table 3). The genotypes in group 2 should be evaluated in 
more places and different growing seasons, because they 
performed almost as well as the commercial cultivars and 
therefore have increased agronomic potential (Figure 1). 

2B707 11034.30 14502.76 7575.88 2B707 9702.91 10959.44 8446.38
DKB 390 10914.10 14382.54 7445.67 DKB 390 9639.53 10896.07 8383.01
AG7000 10144.40 13612.84 6675.97 AG7000 9233.78 10490.32 7977.25
G-54 9494.34 12962.78 6025.97 G-54 8891.10 10147.64 7634.57
G-19 9296.78 12765.21 5828.34 G-19 8786.95 10043.49 7530.42
G-61 9211.94 12680.37 5743.50 G-61 8742.23 9998.76 7485.69
G-64 9208.22 12676.66 5739.78 G-64 8740.27 9996.81 7483.74
G-55 9204.36 12672.80 5737.92 G-55 8738.24 9994.77 7481.70
G-71 9132.10 12600.53 5663.66 G-71 8700.14 9956.67 7443.61
G-14 9107.20 12575.64 5638.76 G-14 8687.02 9943.55 7430.48
G-26 9012.46 12480.90 5544.03 G-26 8637.07 9893.61 7380.54
G-15 8964.03 12432.46 5495.59 G-15 8611.54 9868.07 7355.01
G-05 8949.33 12417.76 5480.89 G-05 8603.79 9860.33 7347.26
G-13 8929.33 12397.80 5460.93 G-13 8593.27 9849.80 7336.74
G-57 8859.88 12328.31 5391.44 G-57 8556.64 9813.17 7300.11
G-47 8816.15 12284.59 5347.72 G-47 8533.59 9790.12 7277.06
G-56 8759.79 12228.22 5291.35 G-56 8503.87 9760.41 7247.34
G-17 8686.51 12154.95 5218.07 G-17 8465.25 9721.78 7208.72
G-09 8610.64 12097.44 5160.57 G-09 8434.93 9691.47 7178.41
G-50 8610.64 12079.08 5142.21 G-50 8425.25 9681.78 7168.72

GY: Grain yield (kg ha-1); ULCI and LLCI is the upper and lower limit (kg ha-1) of the confidence interval at 5% probability.

Table 2. Phenotypic and mixed model selection of 20 individuals from 74 genotypes by productivity.

Genotype GY
Phenotypic selection

ULCI LLCI Genotype GY ULCI LLCI
Selection by mixed models

1 247.50 145.78 0.58 1.56 8329.73 G-10, G-16, G-35, G-43, G-47, G-71
2 231.69 135.17 0.58 0.89 9677.76 DKB, AG7000, 2B707, G-19, G-22, G-26, G-61, G-64
3 222.05 132.46 0.59 1.46 7252.94 G-11, G-12, G-21, G-27, G-36, G-37, G-38, G-39, G-52
4 234.47 129.18 0.55 1.08 8141.33 G-18, G-29, G-46, G-48, G-49, G-55, G-56, G-57, G-58, G-59, G-60, G-61, G-63, G-66,  
      G-67, G-68, G-69, G-70
5 236.86 136.97 0.57 1.56 8149.45 G-07, G-08, G-09, G-13, G-14, G-15, G-17, G-23, G-24, G-25, G-28, G30, G-31, G-32,   
      H-33, G-34, G-01, G-40, G-41, G-42, G-44, G-45, G-02, G-50, G-51, G-53, G-54, G-03,  
      G-65, G-07, G-05, G-06

PH: Plant height, EH: ear height, EP: ear placement, SLB: stalk lodging and breakage, GY: grain yield.

Table 3. Group means using the multivariate method K-means.

Group PH
Variable

GenotypeEH EP SLB GY
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 The genotypes G-19, G-61, G-64, G-26 and G-22 are 
present in this group and were also selected for in the 
mixed and average phenotypic model methods. They may 
be incorporated into breeding programs for low breakage 
and stalk lodging with high yields. Except for G-22, 
these genotypes are on the list of 20 selected genotypes 
found in Table 2. This shows that the selection made 
with multivariate models encompassed not only higher 
yielding genotypes, but those which had better agronomic 
traits (taking into account all features together) and can be 
considered as one of the functions of the selection index 
(Gonçalves et al., 2014). Thus, one can have significant 
productivity gains combined with good agronomic traits 
with the selection of these genotypes. 
 Group 3, comprising approximately 12% of the 
genotypes, was the least productive. This is possibly due 
to the high incidence of genotypes with relative ear height 
above the mean, as well as the presence of plants with high 
lodging and breakage index (1.46). This may be because 
when a genotype has ears high on the stalk (ear height) 
(Figure 1), the possibility of stalk lodging and breakage is 
greater, and even though harvesting is by hand, the yield 
is negatively impacted by contact with the ground and the 
increase in diseases associated with that contact.
 These values should only be used as exploratory data for 
the genotypes’ agronomic characteristics, as the correlation 
between the ear position and productivity are relatively low 
(Alvi et al., 2003; Bello et al., 2010; Toebe and Cargnelutti 
Filho, 2013). This group’s genotypes were not selected 
when using the mixed model and average phenotypic 
methodology, probably because they do not exhibit high 
productivity. This shows the effectiveness of using contrasts 
when applied to the multivariate methodology by K-means 
(Kanungo et al., 2002). 

 Group 4, comprising approximately 25% of genotypes, 
were shorter with low lodging rates, which are desirable 
traits in breeding programs. Of the genotypes in this group, 
only three (G-55, G-56, G57) were also among the 20 best 
genotypes selected according to their genetic values. These 
genotypes deserve special attention because they have good 
qualities found in both analyses.  
 Finally, in Group 5, where approximately 44% of all 
genotypes were allocated, the agronomic traits are not 
favorable, since their above-average characteristics (SLB, 
EP, EH, PH) are all undesirable and their average yields were 
below the overall average (Figure 1). On the other hand, 
there are eight genotypes (G-05, G-09, G-13, G-14, G-15, 
G-17, G-50, G-54) in this group that were selected via the 
mixed model considering BLUP for productivity, revealing 
that even within groups with below-average performance, 
promising genotypes may be found. This shows that the 
analysis via the multivariate approach using k-means can be 
a tool for selection based on mixed models, because despite 
these genotypes having been selected for productivity, they 
do not meet appropriate agronomic standards.  
 In the multivariate approach, the genotypes in groups 1 
and 2 were selected because they present high productivity 
averages and agronomic characteristics similar to those 
found in the commercial cultivars. However, the mixed 
model methodology found five genotypes (G-10, G-16, 
G-22, G-35, G-43) which were not selected in the 
multivariate analysis, emphasizing the complementarity 
of the two approaches. In addition, in the mixed model 
selection via BLUP, selection favors the most productive 
individuals, while the multivariate analysis reveals 
individuals with better agronomic standards. 
 The line drawn on the zero axis “y” of “Groups” is 
the overall average of the standardized variables where 
µ = 0 and σ = 1. Group 2 is represented by the red line, 
and this line is noticeably different from the others and 
its superiority is apparent. This shows the average of the 
evaluated variables that were within the acceptable standard 
for maize genetic improvement programs, when the goal is 
to reduce all evaluated traits except productivity (Figure 1). 

CONCLUSION

It was possible to accurately select genotypes with high 
productivity and good agronomic traits. There was 
a significant difference between selection methods. 
Furthermore, the mixed model and the average phenotypic-
based methods selected the same genotypes with high 
productivity. This did not occur in the multivariate analysis. 
 Selection with multivariate analysis allowed the breeding 
improvement program to include genotypes with better 
agronomic and other desirable traits, instead of only those 
with the highest productivity.  
 The selection based on BLUP via mixed models can be 
supplemented with multivariate analysis using k-means, 
contributing to the accuracy and robustness of the selection, 
and thereby providing superior genotypes in less time. 

Figure 1. Multivariate non-hierarchical cluster analysis 
obtained by the K-means method with the standardized 
averages of the effects of grain yield (GY), plant height (PH), 
ear height (EH), ear placement (EP), and stalk lodging and 
breakage (SLB). 
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