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ABSTRACT

Rain-induced cherry fruit cracking is one of the most important problems in the cherry industry, and its occurrence causes 
significant economic losses. Sweet cherry (Prunus avium [L.] L.) is a non-climacteric fruit affected by both abscisic acid 
(ABA) and methyl jasmonate (MeJA) during development. The objective of this study was to evaluate the effect of these 
phytohormones on cracking susceptibility and quality parameters of sweet cherry fruit (‘Bing’), located in the central 
region of Chile. During two seasons, independent pre-harvest applications of ABA (0.1 mM) and MeJA (0.4 mM) or 
both combined, at fruit developmental stages of fruit set or fruit color change, significantly reduced the number of mature 
cracked fruit after 6 h of immersion in water (p < 0.05). In both seasons the combinations of ABA and MeJA applied at 
fruit set reducing cracking index in an 87% compared to the control without compromising the weight or the diameter of 
the fruits. Moreover, in the second season ABA and MeJA applications at fruit set increased fruit firmness (11% and 6% 
respectively) and fruit color parameters regardless of the fruit stage at application, although slight decreases in soluble 
solids content were observed in most of the treatments.
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INTRODUCTION

Sweet cherry (Prunus avium [L.] L.) is an economically important horticultural crop cultivated in temperate regions 
around the world. Rain-induced fruit cracking during the harvest period is one of the main sources of crop loss in the cherry 
industry. This disorder is characterized by cracks developed on the skin of the fruits after rain, sometimes penetrating deep 
into the flesh, affecting the stem end area, the calyx end, and the cheeks of the fruit (Balbontín et al., 2013). 
 The causes of this phenomenon seem to be related to a rapid increase in water absorption through the fruit surface and/
or water uptake by the tree roots after rain events during the fruit ripening stage (Measham et al., 2009). There are several 
proposed factors contributing to this physiological disorder, such as cultivar, crop condition, irrigation management, 
rootstock, fruit size, osmotic potential of the pulp, skin cuticular characteristics and stage of fruit development (Simon, 
2006). Recently, it has been suggested that a primary cause of fruit cracking could be the increase in fruit surface area 
during fruit development in the absence of cuticle membrane (CM) deposition (Alkio et al., 2012). In this sense, cracking 
results from localized water uptake, the bursting of individual cells and the spreading of the damage to neighboring cells, 
the release of malic acid into the apoplast, the resulting swelling of cell walls and the weakening of the fruit skin until the 
crack becomes macroscopically visible (Winkler et al., 2015).



439CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 78(3) JULY-SEPTEMBER 2018

 Sweet cherry, like other Prunus species, presents a characteristic double-sigmoid pattern of fruit growth with 
three distinctive phases. The first phase is characterized by the rapid division of mesocarp cells, which implies a high 
expansion rate. The second phase involves embryo development and endocarp hardening, with slow fruit growth. In the 
third phase, fruit growth restarts, the color of the fruit changes, and the final fruit size is reached. In the first period, fruit 
growth is accompanied by a high production of CM and therefore the tension on the skin of the fruit is low. Conversely, 
during the second period of fruit expansion (third phase of fruit development), the amount of CM per unit area decreases, 
resulting in the formation of microscopic cracks in the cuticle, increasing the susceptibility to fruit cracking (Peschel and 
Knoche, 2005).
 Plant hormones control many aspects of development in climacteric and non-climacteric fruits (Cherian et al., 2014; 
Kumar et al., 2014). Among these hormones, abscisic acid (ABA) and jasmonic acid seem to be involved in growth and 
ripening of sweet cherry fruits, which are non-climacteric. Various authors have reported that ABA promotes ripening in 
other non-climacteric fruits such as grapes, strawberries, and oranges, modulating anthocyanin biosynthesis and sugar 
accumulation (Kumar et al., 2014; Tijero et al., 2016). In sweet cherry fruit ABA levels have been shown to be high 
at the beginning of the first phase of growth, gradually decreasing during pit hardening, and increasing again during 
the final stage of fruit expansion (Ren et al., 2011; Luo et al., 2014). It is known that ABA plays a decisive role in the 
regulation of cuticle and cell wall biosynthesis, which consequently affects the structure and composition of the outer 
surface layers. Although a direct effect of ABA application on the fruit CM biosynthesis has not been reported, exogenous 
ABA application in Arabidopsis increases cuticle lipids biosynthesis, reducing cuticle permeability (Martin et al., 2017).
 Jasmonates (JAs), such as jasmonic acid and methyl jasmonate (MeJA), influence physiological processes in plants, 
including biotic and abiotic stress tolerance, seed germination, leaf senescence, and fruit ripening (Cherian et al., 2014). 
Its possible influence on wax biosynthesis, and potentially on fruit cuticle properties, has been little studied (Mandaokar 
et al., 2006). The involvement of JAs in fruit ripening has been reported in several climacteric and non-climacteric 
fruit species. In apple, sweet cherry and peach, elevated levels of JA have been found during the early stages of fruit 
development, when cell division occurs, coinciding with the highest rates of cuticular membrane biosynthesis (Ziosi et 
al., 2008; Alkio et al., 2012). In sweet cherry fruits, Wang et al. (2015) reported that use of MeJA lowered fruit fungal 
infection, while Kucuker and Ozturk (2015) as well as Saracoglu et al. (2017) found that preharvest MeJA application 
during the last stage of fruit development increased fruit firmness in different sweet cherry varieties. 
 Until now, there have been no reports of the effects of pre-harvest ABA or MeJA applications on sweet cherry fruit 
cracking. However, we hypothesize that the use of these hormones would have effects on cuticle and cell wall properties, 
tending to increase cracking tolerance. In this paper, we evaluate the effects of MeJA and ABA in preharvest applications 
to prevent fruit cracking occurrence in sweet cherry fruit, as well as their effects on fruit quality.

MATERIALS AND METHODS

Plant material and treatments 
Fruit samples were obtained from a commercial cherry (Prunus avium [L.] L.) orchard located in Chillán (36°31’07.4” 
S; 72°05’24.4” W), Chile. The cracking-susceptible sweet cherry ‘Bing’, grafted onto ‘Colt’ rootstock, was used for the 
study. Trees were planted at north-south direction with 5.0 m row spacing and 3.0 m on-row tree spacing and trained in 
central leader system under plastic shelter. All cultural practices were regularly implemented. 
 For each hormonal treatment, trees were sprayed with different hormone solutions: (1) 0.1 mM abscisic acid (ABA; 
Sigma-Aldrich, Darmstadt, Germany); (2) 0.4 mM methyl jasmonate (MeJA; Sigma-Aldrich); (3) a combination of both 
hormones (0.1 mM ABA + 0.4 mM MeJA); and (4) controls with distilled water. The concentrations used were in accordance 
with Luo et al. (2014) and Ren et al. (2011) for ABA, and with Ruiz et al. (2013) and Yao and Tian (2005) for MeJA.
 Hormonal treatments (ABA, MeJA, or ABA+MeJA) were applied to three trees considering single applications at one 
of the two periods of maximum fruit growth, fruit set (FS; 20 d after full bloom [DAFB]) or initial fruit growth stage 
at fruit color change (FCC; 60 DAFB; final fruit growth stage). The trial was carried out over two seasons (2016 and 
2017) with different trees. For both seasons, the effects of hormone applications on fruit cracking index, weight and size 
were measured. In the second season, solid soluble content (SSC), titratable acidity (TA), fruit firmness (FF), and color 
parameters were also assessed. Control fruit received applications of water at the same time. 
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 In order to characterize growth evolution during fruit development, 25 fruits per tree were measured every week from 
anthesis to ripe stage (harvest) using a digital vernier caliper. The ripe stage was determined according to the grower’s 
commercial standards (mainly mahogany red color and a minimum of 18 °Brix). At that point 50 ripe fruits of uniform 
size were collected from each tree and assessed for induced cracking and quality parameters. 

Cracking tolerance and fruit quality assessments
To evaluate cracking tolerance, fruit of similar size from different treatments were sorted visually to remove any damaged 
fruit. A set of 25 stem-attached fruits from each biological sample (tree) was placed in distilled water at 20 °C for 6 h. 
Cracking index (CI) was calculated by the method used by Balbontín et al. (2014), based in the formula reported by 
Christensen (1972).

CI = ((6a + 5b + 4c + 3d + 2e+1f) (MPV)-1) 100
where a, b, c, d, e and f represent the number of cracked fruit at 1, 2, 3, 4, 5 and 6 h respectively, MPV is maximum 
possible value (25 fruits × 6 h).
 Seventy-five fruits from each treatment (25 fruits per tree) were used to characterize weight, size, skin color, FF, SSC, 
and TA. Fruit skin color was measured on two opposite sides of the mid-section of each fruit using a benchtop 45°/0° 
spectrophotometer (ColorFlex EZ, HunterLab, Reston, Virginia, USA) and the averages of these two measurements were 
recorded and expressed as CIE L*a*b* coordinates together with the dimensions of color chroma (C*) and hue angle 
(h°). Fruit firmness was determined nondestructively with a programmable texture analyzer (Cherrytech V5, developed 
at Universidad de Concepción, Chile) equipped with a 30 mm diameter probe mounted on a screw, using piezoelectric 
sensors to record the force (N) needed to produce 2 mm of cherry fruit deformation. Measurements were recorded on 
both cheek sides of the fruit, at the fruit’s maximum width. SSC was determined using a digital temperature-compensated 
refractometer (96801, Hanna Instruments, Woonsocket, Rhode Island, USA) and the results were reported as °Brix. 
Titratable acidity was determined by diluting fruit juice in distilled water (1/10, v/v) and titrating with 20 mM NaOH to 
pH 8.2 using a continually immersed pH meter, and the results were given as percentage of malic acid. The results were 
also expressed as the SSC/TA ratio.

Statistical analysis
Experiments were conducted following a completely randomized design (CRD) two-way factorial ANOVA: the primary 
factor was hormone treatments of ABA, MeJA, and ABA + MeJA; and the secondary factor was the time of application (FS 
and FCC). The control group received water applications on the last schedule. Statistical analyses were performed using 
INFOSTAT/P 1.1 for Windows software (Grupo InfoStat Professional, Facultad de Ciencias Agropecuarias, Universidad 
Nacional de Córdoba, Córdoba, Argentina). Differences between treatments were considered significant at P ≤ 0.05 
(Duncan’s multiple range test).

RESULTS

Fruit cracking tolerance
Fruit cracking decreased significantly in all treatments compared to the control (Table 1). In the first season 74.89% of 
untreated fruits showed cracking after 6 h of distilled water immersion, while in the second season control fruits registered 
values of 54.22%. The application of ABA at FS stage reduced the number of cracked fruits to 14.89% and 16.67% in the 
first and second season respectively (P < 0.05). Spraying this hormone at FCC stage also produced lower values than the 
control in both seasons (32.22% and 23.33% for the first and second season). 
 Similarly, MeJA applications significantly decreased numbers of cracked fruits, averaging 28.89% in fruit treated 
at FS in the first season and 21.33% in the second season, while values for fruit treated at FCC stage showed lower 
effectiveness in both seasons (41.33% and 33.56%, respectively). Finally, the combined application of ABA + MeJA also 
significantly reduced fruit cracking levels in all treatments with respect to control fruits. Application of both hormones 
at FS reduced cracking to 9.33% in the first season and 6.89% in the second season, and the application in FCC stages 
showed values of cracking index of 26.44% and 18.67% in the first and second season respectively. The values of fruit 
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cracking produced by the application of ABA+Meja at FS were significantly lower than the observed values for each 
independent hormone application. For each hormonal treatment, both independent and combined applications at FCC 
were the least effective (Table 1).

Fruit quality parameters
Untreated fruit showed a mean weight value of 9.56 g and 10.64 g for the first and second season, which was nonsignificant 
different from the weight values observed in ABA-treated fruit in both seasons (Table 1). High weight values were 
observed in the second season in MeJA or ABA+MeJA-treated fruit at FCC stage. Fruit diameters were affected by the 
treatments in a similar way as weight; but differences with respect to control fruit (27.53 and 28.61 mm for the first and 
second season respectively) were only observed in MeJA at FCC stage for the first season and ABA+MeJA-treated fruit 
at FCC stage in the second season (Table 1).
 The effects of second season-pre-harvest ABA and MeJA sprays on fruit firmness, SSC, TA, and SSC/TA ratio are 
summarized in Table 2. Fruit firmness showed higher values (P < 0.05) with ABA and MeJA treatments than in the control 
fruit, while treatment with both hormones at any stage of application did not produce significant differences compared 
to the control. Most treatments lowered SSC values and significant differences were observed in ABA at FCC, MeJA at 
FS and FCC. Fruits treated with both hormones at FFC also showed lower values of SSC compared to the control fruit. 
Nonsignificant differences were observed between control fruits and the treatments with respect to fruit acidity (% malic 
acid). Values of SSC/TA ratio were only different from the control in the MeJA-treated fruit at FS and FCC stages.

Table 1. Effect of abscisic acid (ABA) and/or methyl jasmonate (MeJA) pre-harvest applications on cracking, weight, and 
size of sweet cherry fruit.

Control   74.89 ± 9.90d 54.22 ± 7.67d 9.56 ± 0.62ab 10.64 ± 1.15b 27.53 ± 0.31ab 28.61 ± 1.17ab

ABA FS  14.89 ± 2.78a 16.67 ± 1.76b 9.55 ± 0.57ab 10.32 ± 1.20ab 27.37 ± 0.40ab 28.34 ± 1.20ab
 FCC 32.22 ± 3.67b 23.33 ± 1.33b 9.10 ± 0.14a 10.98 ± 0.99bc 26.84 ± 0.16a 29.31 ± 2.41bc

MeJA FS 28.89 ± 2.78b 21.33 ± 1.76b 10,17 ± 0.28bc 11.51 ± 0.96c 28.19 ± 0.38bc 28.82 ± 3.50abc
 FCC 41.33 ± 1.76c 33.56 ± 1.92c 10.69 ± 0.64c 11.35 ± 1.20c 28.57 ± 0.55c 29.34 ± 1.26bc

ABA+MeJA FS 9.33 ± 3.71a 6.89 ± 3.42a 9.87 ± 0.55abc 9.94 ± 1.62a 28.13 ± 0.50bc 28.03 ± 1.78a
 FCC 26.44 ± 3.15b 18.67 ± 2.40b 10.47 ± 0.46bc 11.63 ± 1.11c 28.25 ± 0.84bc 29.77 ± 0.95d

Treatments

Data indicate the mean of three replicates; ± standard deviation.
Different letters indicate significant diferences between treatments in each parameter (Duncan, P ≤ 0.05). 
FS: Fruit set; FCC: fruit color change.

Cracking index

2016 2017

%

2016 2017 20172016

Fruit weight Fruit diameter

g mm

Table 2. Effect of abscisic acid (ABA) and/or methyl jasmonate (MeJA) pre-
harvest applications in second season (2017) on quality parameters of sweet 
cherry fruit.

  N °Brix % Malic acid 
Control   3.76 ± 0.28a 28.01 ± 2.41de 0.61 ± 0.05a 46.18 ± 4.09b

ABA FS 4.01 ± 0.23cd 27.32 ± 2.71cd 0.63 ± 0.04a 43.47 ± 1.64ab
 FCC 4.02 ± 0.20cd 25.26 ± 2.73ab 0.67 ± 0.04a 37.75 ± 1.25ab

MeJA FS 4.17 ± 0.26d 25.01 ± 2.29a 0.69 ± 0.07a 36.50 ± 4.51a
 FCC 3.96 ± 0.26bc 25.55 ± 2.57ab 0.71 ± 0.05a 36.23 ± 3.86a

ABA+MeJA FS 3.77 ± 0.21a 28.99 ± 3.16ef 0.65 ± 0.04a 44.94 ± 4.65ab
 FCC 3.82 ± 0.31ab 26.49 ± 1.82bc 0.61 ± 0.09a 43.88 ± 7.50ab

Treatments

Data indicate the mean of three replicates; ± standard deviation.
Different letters indicate significant diferences between treatments in each parameter (Duncan, 
P ≤ 0.05).
SSC: Soluble solid content; TA: titratable acidity; FS: fruit set; FCC: fruit color change.

Fruit quality parameters

Fruit firmness SSC SSC/TATA
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 Treatments with ABA, MeJA or ABA + MeJA significantly affected the fruit skin color parameters depending on fruit 
development stage at application (Table 3). All ABA-treated fruit showed a greater L* value than control fruit, while the 
MeJA treatment at FS did not affect significantly this parameter. ABA+MeJA-treated fruit showed greater values in FS 
and FCC stages than control fruit. All treated fruit presented higher values of a* and C* than the control fruits (9.91 and 
10.53, respectively), although the treatment of ABA+Meja at FCC did not produce a significant increment of this last 
parameter. All treatments showed h° values significantly lower than the control.

DISCUSSION

The results of this study indicate that pre-harvest treatment with ABA and/or MeJA can significantly increase sweet cherry 
fruit cracking tolerance and positively affect other fruit quality parameters (Table 1), such as fruit firmness and skin color, 
depending on both the hormone and fruit development stage when is applied. The effect of these phytohormones on 
cracking susceptibility could be associated with several mechanisms. For example, it is known that ABA plays an active 
role in wax metabolism through the activation of genes related to biosynthesis and transport of cutin and waxes (Kosma 
et al., 2009; Martin et al., 2017). Indeed, in Arabidopsis it has been shown that ABA induces the expression of CER1 
(Kosma et al., 2009), which encodes a regulation enzyme that promotes C29 alkane biosynthesis (Bourdenx et al., 2011). 
Although the relationship between ABA and cuticle membrane biosynthesis components has not been studied in sweet 
cherry fruits, it has been determined that a higher presence of cuticle C29-alkanes is related to higher cracking tolerance 
levels in different sweet cherry cultivars (Rios et al., 2015). Therefore, it is possible to speculate that the increase in 
cracking tolerance observed in this study may have been due to the activation of similar mechanisms. 
 Jasmonates also induce the upregulation of several wax biosynthesis-related genes (Mandaokar et al., 2006). However, 
to date, there are no reports that show a direct relationship between JA applications and fruit cuticle properties. On the 
other hand, the reduction in cracking levels found in MeJA-treated fruit could be related to the increase in firmness 
observed in the fruits treated with this hormone. In Prunus species such as plum (Martínez-Esplá et al., 2014; Kucuker et 
al., 2014) and sweet cherry (Saracoglu et al., 2017) it has been reported that MeJA applications can delay fruit softening 
during ripening. The underlying mechanism involved in this phenomenon seems to be related to the regulation of cell wall 
metabolism-associated genes; for example, in sweet cherry, MeJA application has induced the activity of phenylalanine 
ammonia lyase (PAL) and peroxidase (POD) enzymes, both involved in lignin biosynthesis (Yao and Tian, 2005), and 
in the increase of fruit firmness (Cai et al., 2006). In addition, in peach, MeJA applications can reduce the expression 
of polygalacturonase genes and their associated enzyme activity (Ziosi et al., 2008), delaying cell wall softening and 
therefore increasing resistance to mechanical damage (Reyes-Díaz et al., 2016). We observed that preharvest applications 
of MeJA, independent of application time, significantly increased sweet cherry flesh firmness, as was also seen by Kucuker 

Table 3. Effect of abscisic acid (ABA) and/or methyl jasmonate (MeJA) pre 
harvest applications in second season (2017) on skin color parameters of sweet 
cherry fruit.

Control   22.94 ± 1.48a 9.91 ± 3.12a 10.53 ± 3.32a 19.81 ± 2.06d

ABA FS  24.84 ± 1.87c 12.42 ± 2.01bcd 12.87 ± 2.12bcd 15.08 ± 1.57a
 FCC  25.22 ± 1.80c 13.83 ± 2.25d 14.38 ± 2.41d 15.60 ± 1.79ab

MeJA FS 23.73 ± 3.38ab 11.56 ± 3.01b 12.06 ± 3.20b 16.26 ± 2.20bc
 FCC  24.64 ± 1.39bc 13.37 ± 2.88cd 13.95 ± 3.05cd 16.44 ± 1.33bc

ABA+MeJA FS 24.15 ± 1.79bc 11.99 ± 3.45bc 12.55 ± 3.63bc 17.10 ± 1.62c
 FCC 24.98 ± 1.57c 11.44 ± 1.73b 11.96 ± 1.83ab 16.69 ± 2.22c

Treatments

L*: Lightness of a surface; a*: green-red coordinates; C*: color purity: h°: hue angle. 
Data indicate the mean of three replicates; ± standard deviation.
Different letters indicate significant diferences between treatments in each parameter (Duncan, 
P ≤ 0.05). 
FS: Fruit set; FCC: fruit color change.

Fruit color parameters

L* a* h°C*
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and Ozturk (2015). The possibility that increased firmness is associated with reduced cracking susceptibility has also been 
suggested by previous work on giberellins effects in sweet cherry fruit (Yildirim and Koyuncu, 2010). In a similar way, 
Erogul (2014) reported that Ca applications to cherry fruits increase their firmness, as well as their resistance to cracking. 
Elsewhere, Yamaguchi et al. (2002) observed that firmer cherry fruits can be more susceptible to cracking. Nevertheless, 
this seems to have been an effect of cultivar, as has been shown in blueberries, in which the relationship between the 
firmness of fruits and their cracking susceptibility depends on variety (Marshall et al., 2008).
 Applications of hormones at different fruit developmental stages produced distinct levels of fruit cracking tolerance, 
where the applications were significantly less effective at FCC stage. Any explanation must consider that both MeJA and 
ABA present endogenous high concentrations in sweet cherry fruits during the first phase of fruit growth, while in the 
last stage, the levels are lower (Luo et al., 2014). In other studies, application time has been shown differentially effect 
parameters such as color, firmness, or fruit weight (Martínez-Esplá et al., 2014).
 The effect of ABA on fruit weight has been shown to depend on timing, dose and fruit species; for example, in apples, 
ABA (1.13 mM) applied at fruit set increased fruit weight (Greene et al., 2011), while in grapes, ABA (1.35 mM) at fruit 
color change did not have significant effects on this parameter (Cantín et al., 2007). In sweet cherry fruit ‘Satonishiki’, 
Luo et al. (2014) reported an increase of fruit weight as a result of ABA applications (0.1 mM) towards the end of fruit 
ripening. However, in our study, using a different cultivar, similar doses did not produce significant differences from 
untreated fruit at any fruit growth stage.
 In our study, MeJA treated fruit showed different weights depending on fruit developmental stage of application; 
the fruit that was sprayed during the phase of maximum fruit expansion had higher fruit mass. These results show that 
the effect of this hormone on fruit weight could depend on fruit developmental stage and its variability in different 
cultivars. Similarly, Kucuker and Ozturk (2015) reported an increase in sweet cherry (‘North Wonder’) fruit weight 
with the application of 10 mM MeJA 3 weeks before harvest. Nevertheless, Saracoglu et al. (2017), using the same dose 
in ‘Regina’, ‘Sweet Heart’ and ‘0900 Ziraat’ did not show increases in fruit mass at the same stage of application. A 
possible explanation of these results can be found in the sensitive response to MeJA levels of cell growth and extension 
mechanisms, leading to varied effects, as reported by Ozturk et al. (2013). 
 Fruit diameter was not affected by the combined application of ABA and MeJA at FS, and the application of MeJA or 
both hormones combined at FCC resulted in an increase of fruit diameter only in the first and second season respectively. 
However, the magnitude of this variation was small and did not have an effect on the fruit commercial value.
 Skin fruit color was altered in all treatments with ABA, MeJA or both combined (Table 3). ABA increases the color 
appearance of fruits and is used routinely in different grape cultivars (Cantín et al., 2007). Likewise, the application of 0.4 
mM ABA at FCC stage has increased the anthocyanins content in sweet cherries (Ren et al., 2011). 
 In the CIELab system, fruit color is measured using different parameters, where L* represents the lightness of a 
surface, while parameters such as a* and C* represent the green-red coordinates and color purity respectively. Hue angle 
(h°) indicates the proximity to specific colors, where the values closer to 0 or to 360 indicate a purer red. In the case of 
ABA treated fruit, the parameters of L*, a* and C* increased their values, while the values of h° decreased significantly. 
The decrease observed in h° could be attributed to an increase of anthocyanin content, as has been reported previously 
(Goncalves et al., 2007; Serrano et al., 2009). These authors found a direct negative correlation between the levels of 
anthocyanins (cyanidin-3-glucoside) and hue angle in sweet cherry fruits and related species. 
 Jasmonates affect the color of fruits in several species, through the induction of chlorophyll degradation and synthesis 
of anthocyanins. For example, preharvest applications of MeJA in apple and strawberry stimulate the accumulation of red 
pigments in the fruit skin (Rudell et al., 2005; Concha et al., 2013). However, the possible effect of this hormone in the 
induction of color in sweet cherry fruit is not well understood. Kondo (2006) reported that the preharvest application of 3 
mM MeJA to cherry fruit ‘Satohnishiki’ did not increase the accumulation of anthocyanins, despite increasing the expression 
of anthocyanin biosynthesis-related genes. Similarly, Kucuker and Ozturk (2015) also showed that the application of 10 
mM MeJA to cherry fruit ‘North Wonder’ did nonsignificantly affect fruit color. Nevertheless, Saracoglu et al. (2017) using 
similar doses and times of application, reported changes in fruit color parameters in different sweet cherry varieties. In our 
study, MeJA applications differentially affected the color parameters, particularly in lightness. The values of a* and C* 
were higher in all hormonal treatments compared to the control, while the value of h° was smaller. These results indicate 
that MeJA and/or ABA applications affect fruit color properties in a manner that depend on the time of application.
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 The SSC is an important quality attribute in sweet cherry fruit; values over 20 °Brix are commonly acceptable for 
consumption of ‘Bing’ (Zhang and Whiting, 2011). Preharvest applications of 3.78 mM ABA at FCC stage in sweet cherry 
fruit increase the SSC (Kondo and Inoue, 1997). Our results show that treatments with ABA significantly decreased the 
SSC values (at FCC stage); however, all values remained above the threshold of acceptability. A similar outcome has been 
reported in grape, where a decrease in SSC was observed with ABA treatment (Cantín et al., 2007). 
 Regarding TA or SSC/TA ratio values, nonsignificant differences were observed between control and treated fruit, 
although the application of MeJA at FS or FCC stages decreased the SSC/TA ratio, which is in agreement with previous 
reports in peach and sweet cherry (Ziosi et al., 2008; Saracoglu et al., 2017). In peach, preharvest applications of MeJA 
affected expression of several fruit ripening-associated genes, delaying fruit ripening (Ruiz et al., 2013).

CONCLUSIONS

Preharvest applications of abscisic acid (ABA), methyl jasmonate (MeJA) or both combined can be performed at different 
stages of fruit development with the aim of reducing fruit cracking susceptibility in sweet cherry. However, some of these 
hormones/timing combinations could affect the quality parameters. For example, in the case of ABA or MeJA, the best 
reduction of the cracking index was achieved applying these hormones at the stage of fruit set, but slights reductions in 
solid soluble content were also observed. 
 The treatment that increased the most the fruit cracking tolerance was ABA+MeJA at fruit set. Thus, a single spray 
application could increase cracking tolerance without significantly compromising the quality of the fruit of and improving 
fruit color. This study provides new information about the effect of these hormones on fruit quality and the management 
of rain-induced cherry fruit cracking.

ACKNOWLEDGEMENTS

This work was supported by CONICYT, Chile grant FONDECYT/Regular 1150764 to Cristian Balbontín and CONICYT 
PhD scholarship to Camilo Gutierrez. The authors thank ‘‘Fundo Las Garzas” of Top Wine Group Corporation for 
permission to use their trees, provision of the cherries and technical support received.

REFERENCES

Alkio, M., Jonas, U., Sprink, T., van Nocker, S., and Knoche, M. 2012. Identification of putative candidate genes involved in 
cuticle formation in Prunus avium (sweet cherry) fruit. Annals of Botany 110:101-112. doi:10.1093/aob/mcs087. 

Balbontín, C., Ayala, H., Bastias, R., Tapia, G., Ellena, M., Torres, C., et al. 2013. Cracking in sweet cherries: A comprehensive 
review from a physiological, molecular and genomic perspective. Chilean Journal of Agricultural Research 73:66-72. 
http://dx.doi.org/10.4067/S0718-58392013000100010.

Balbontín, C., Ayala, H., Rubilar, J., Cote, J., and Figueroa, C.R. 2014. Transcriptional analysis of cell wall and cuticle related 
genes during fruit development of two sweet cherry cultivars with contrasting levels of cracking tolerance. Chilean Journal 
of Agricultural Research 74:162-169. https://dx.doi.org/10.4067/S0718-58392014000200006.

Bourdenx, B., Bernard, A., Domergue, F., Pascal, S., Léger, A., Roby, D., et al. 2011. Overexpression of Arabidopsis 
ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic 
stresses. Plant Physiology 156:29-45. doi:10.1104/pp.111.172320.

Cai, C., Chen, K., Xu, C., and Ferguson, I.B. 2006. Accumulation of lignin in relation to change in activities of lignification enzymes 
in loquat fruit flesh after harvest. Postharvest Biology and Technology 40:163-169. doi:10.1016/j.postharvbio.2005.12.009.

Cantín, C.M., Fidelibus, M.W., and Crisosto, C.H. 2007. Application of abscisic acid (ABA) at veraison advanced red color 
development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biology and Technology 46:237-
241. doi:10.1016/j.postharvbio.2007.05.017.

Cherian, S., Figueroa, C.R., and Nair, H. 2014. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of 
climacteric versus non-climacteric fruit. Journal of Experimental Botany 65:4705-4722. doi:10.1093/jxb/eru280.

Christensen, J.V. 1972. Cracking in cherries. III. Determination of cracking susceptibility. Acta Agriculturae Scandinavica 
22:128-136.

Concha, C.M., Figueroa, N.E., Poblete, L.A., Oñate, F.A., Schwab, W., and Figueroa, C.R. 2013. Methyl jasmonate treatment 
induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant 
Physiology and Biochemistry 70:433-444. doi:10.1016/j.plaphy.2013.06.008.



445CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 78(3) JULY-SEPTEMBER 2018

Erogul. D. 2014. Effect of preharvest calcium treatments on sweet cherry fruit quality. Notulae Botanicae Horti Agrobotanici 
Cluj-Napoca 42(1):150-153.

Goncalves, B., Silva, A.P., Moutinho-Pereira, J., Bacelar, E., Rosa, E., and Meyer, A.S. 2007. Effect of ripeness and 
postharvest storage on the evolution of color and anthocyanins in cherries (Prunus avium L.) Food Chemistry 103:976-984. 
doi:10.1016/j.foodchem.2006.08.039.

Greene, D.W., Schupp, J.R., and Winzeler, H.E. 2011. Effect of abscisic acid and benzyladenine on fruit set and fruit quality of 
apples. Horticultural Science 46:604-609.

Kondo, S. 2006. The roles of jasmonates in fruit color development and chilling injury. Acta Horticulturae 727:45-56. 
doi:10.17660/ActaHortic.2006.727.3.

Kondo, S., and Inoue, K. 1997. Abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) content during growth 
of ‘Satohnishiki’ cherry fruit, and the effect of ABA and ethephon application on fruit quality. Journal of Horticultural 
Science 72:221-227.

Kosma, D.K., Bourdenx, B., Bernard, A., Parsons, E.P., Lü, S., Joube’s, J., et al. 2009. The impact of water deficiency on leaf 
cuticle lipids of Arabidopsis. Plant Physiology 151:1918-1929. doi:10.1104/pp.109.141911.

Kucuker, E., and Ozturk, B. 2015. The effects of aminoethoxyvinylglycine and methyl jasmonate on bioactive compounds and 
fruit quality of ‘North Wonder’ sweet cherry. African Journal of Traditional, Complementary and Alternative Medicines 
12:114-119. doi:10.21010/ajtcam.v12i2.17.

Kucuker, E., Ozturk, B., Celik, S.M., and Aksit, H. 2014. Pre-harvest spray application of methyl jasmonate plays an important 
role in fruit ripening, fruit quality and bioactive compounds of Japanese plums. Scientia Horticulturae 176:162-169. 
doi:10.1016/j.scienta.2014.07.007.

Kumar, R., Khurana, A., and Sharma, A. 2014. Role of plant hormones and their interplay in development and the ripening of 
fleshy fruits. Journal of Experimental Botany 65(16):4561-4575. doi:10.1093/jxb/eru277.

Luo, H., Dai, S.J., Ren, J., Zhang, C.X., Ding, Y., Li, Z., et al. 2014. The role of ABA in the maturation and postharvest life of a 
nonclimacteric sweet cherry fruit. Journal of Plant Growth Regulation 33:373-383. doi:10.1007/s00344-013-9388-7.

Mandaokar, A., Thines, B., Shin, B., Lange, B.M., Choi, G., Koo, Y.J., et al. 2006. Transcriptional regulators of stamen development 
in Arabidopsis identified by transcriptional profiling. Plant Journal 46:984-1008. doi:10.1111/j.1365-313X.2006.02756.x.

Marshall, D.A., Spiers J.M., Stringer S.J. 2008. Blueberry splitting tendencies as predicted by fruit firmness. HortScience 
43:567-570.

Martin, L.B.B., Romero, P., Fich, E.A., Domozych, D., and Rose, J.K.C. 2017. Cuticle biosynthesis is developmentally regulated 
by abscisic acid. Plant Physiology 174:1384-1398. doi:10.1104/pp.17.00387.

Martínez-Esplá, A., Zapata, P.J., Castillo, S., Guillen, F., Martinez-Romero, D., Valero, D., et al. 2014. Pre-harvest application of 
methyl jasmonate (MeJA) in two plum cultivars. 1. Improvement of fruit growth and quality attributes at harvest. Postharvest 
Biology and Technology 98:98-105. doi:10.1016/j.postharvbio.2014.07.011.

Measham, P.F., Bound, S.A., Gracie, A.J., and Wilson, S.J. 2009. Incidence and type of cracking in sweet cherry (Prunus avium 
L.) are affected by genotype and season. Crop and Pasture Science 60:1002-1008. doi:10.1071/CP08410.

Ozturk, B., Altuntas, E., Yildiz, K., Ozkan, Y., and Saracoglu, O. 2013. Effect of methyl jasmonate treatments on the 
bioactive compounds and physicochemical quality of ‘Fuji’ apples. Ciencia e Investigacion Agraria 40:201-211. 
doi:10.4067/S0718-16202013000100018.

Peschel, S., and Knoche, M. 2005. Characterization of microcracks in the cuticle of developing sweet cherry fruit. Journal of the 
American Society for Horticultural Science 130:487-495.

Ren, J., Chen, P., Dai, S.J., Li, P., Li, Q., Ji, K., et al. 2011. Role of abscisic acid and ethylene in sweet cherry 
fruit maturation: molecular aspects. New Zealand Journal of Crop and Horticultural Science 39:161-174. 
doi:10.1080/01140671.2011.563424.

Reyes-Díaz, M., Lobos, T., Cardemil, L., Nunes-Nesi, A., Retamales, J., Jaakola, L., et al. 2016. Methyl jasmonate: An alternative 
for improving the quality and health properties of fresh fruits. Molecules 21(6):567. doi:10.3390/molecules21060567.

Rios, J., Robledo, F., Schreiber, L., Zeisler, V., Lang, E., Carrasco, B., et al. 2015. Association between the concentration 
of n-alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits. Scientia Horticulturae 197:57-65. 
doi:10.1016/j.scienta.2015.10.037.

Rudell, D.R., Fellman, J.K., and Mattheis, J.P. 2005. Preharvest application of methyl jasmonate to ‘Fuji’ apples enhances red 
coloration and affects fruit size splitting, and bitter pit incidence. HortScience 40:1760-1762.

Ruiz, K.B., Trainotti, L., Bonghi, C., Ziosi, V., Costa, G., and Torrigiani, P. 2013. Early methyl jasmonate application to peach 
delays fruit/seed development by altering the expression of multiple hormone-related genes. Journal of Plant Growth 
Regulation 32:852-864. doi:10.1007/s00344-013-9351-7.

Saracoglu, O., Ozturk, B., Yildiz, K., and Kucuker, E. 2017. Pre-harvest methyl jasmonate treatments delayed ripening and 
improved quality of sweet cherry fruits. Scientia Horticulturae 226:19-23. doi:10.1016/j.scienta.2017.08.024.

Serrano, M., Díaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillen, F., Martínez-Romero, D., et al. 2009. Maturity stage at harvest 
determines the fruit quality and antioxidant potential after storage of sweet cherry cultivars. Journal of Agricultural and Food 
Chemistry 57:3240-3246. doi:10.1021/jf803949k.



446CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 78(3) JULY-SEPTEMBER 2018

Simon, G. 2006. Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of 
prevention. International Journal of Horticultural Science 12:27-35.

Tijero, V., Teribia, N., Muñoz, P., and Munné-Bosch, S. 2016. Implication of abscisic acid on ripening and quality in sweet 
cherries: Differential effects during pre- and post-harvest. Frontiers in Plant Science 7:602. doi:10.3389/fpls.2016.00602.

Wang, L., Jin, P., Wang, J., Jiang, L., Shan, T., and Zheng, Y. 2015. Methyl jasmonate primed defense responses 
against Penicillium expansum in sweet cherry fruit. Plant Molecular Biology Reporter 33:1464-1471. 
doi:10.1007/s11105-014-0844-8.

Winkler, A., Ossenbrink, M., and Knoche, M. 2015. Malic acid promotes cracking of sweet cherry fruit. Journal of the American 
Society for Horticultural Science 140:280-287.

Yao, H., and Tian, S. 2005. Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on 
inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology 35:253-262. 
doi:10.1016/j.postharvbio.2004.09.001.

Yamaguchi, M., Sato I., and Ishiguro, M. 2002. Influences of epidermal cell sizes and flesh firmness on cracking 
susceptibility in sweet cherry (Prunus avium L.) cultivars and selections. Journal of the Japanese Society for 
Horticultural Science 71:738-746.

Yildirim, A.N., and Koyuncu, F. 2010. The effect of gibberellic acid applications on the cracking rate and fruit quality in the 
‘0900 Ziraat’ sweet cherry cultivar. African Journal of Biotechnology 9:6307-6311.

Zhang, C., and Whiting, M.D. 2011. Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Scientia 
Horticulturae 127:341-346. doi:10.1016/j.scienta.2010.11.006.

Ziosi, V., Bonghi, C., Bregoli, A.M., Trainotti, L., Biondi, S., Sutthiwal, S., et al. 2008. Jasmonate-induced transcriptional 
changes suggest a negative interference with the ripening syndrome in peach fruit. Journal of Experimental Botany 
59:563-573. doi:10.1093/jxb/erm331. 


