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The paper presents the implementation of multiple 
model approach to modelling of Escherichia coli 
BL21(DE3)pPhyt109 fed-batch cultivation processes for 
an extracellular production of bacterial phytase. Due to 
the complex metabolic pathways of microorganisms, the 
accurate modelling of bioprocesses is rather difficult. 
Multiple model approach is an alternative concept 
which helps in modelling and control of complex 
processes. The main idea is the development of a model 
based on simple submodels for the purposes of further 
high quality process control. The presented simulations 
of E. coli fed-batch cultivation show how the process 
could be divided into different functional states and how 
the model parameters could be obtained easily using 
genetic algorithms. The obtained results and model 
verification demonstrate the effectiveness of the applied 
concept of multiple model approach and of the proposed 
identification scheme. 
 
 
Bioprocesses, and particularly cultivation processes, are 
characterized by a complicated structure of organization 
and independent characteristics, which determine their 
nonlinearity and non-stationary. Model formulation for a 
bioprocess is traditionally performed under conditions of a 
well-defined medium with single-substrate limitations, 
conditions that are not applied to most industrial 
cultivations, typically running in a complex medium. In 
many cases, the globally valid conventional numeric 
models, which describe the overall process behavior cannot 
be used in on-line monitoring and control, either because 
they do not describe the process well enough or contain too 
many poorly known parameters. Simple unstructured 
models, which account for key process variables (biomass, 
substrate and product concentrations) do not reflect 
metabolic changes and are unsuitable for many tasks 
(Zhang et al. 1994; Tartakovsky et al. 1997; Feng and 
Glassey, 2000; Venkat et al. 2003). Model predictions 
could be improved using structured models, but these 
models incorporate too many equations and unknown 
parameters and provide a qualitative, rather than 

quantitative description of the process. The structured 
model of a bioprocess is normally so complicated that it is 
difficult to be used for industrial scale production. 
Therefore, some alternative modelling methods for the 
purpose of monitoring and control of bioprocesses have to 
be searched for. 

 
The multiple model approach is an alternative concept, 
which helps in modelling and control of complex processes 
such as bioprocesses. The state of the approaches to 
modelling and control problems arising working with 
systems of ever-increasing complexity and associated 
nonlinearity is presented by (Tartakovsky et al. 1997). In 
this work the authors describe an approach which embraces 
a wide range of methods by developing complex models 
and controllers based on multiple submodels. 
 
The functional state concept could be use to describe and 
analyze the current biological state of bioprocesses, and 
could be applied in expert system-based fault diagnosis and 
in control of bioprocesses (Zhang et al. 1994). The main 
idea is to use a two-level hierarchy where at the first level 
the process is divided into macrostates, called functional 
states, according to behavioural equivalence. In each 
functional state the process is described by a conventional 
type of model, called a local model, which is valid only in 
this functional state. In each functional state certain 
metabolic pathways are active enough to dominate the 
overall behaviour of the process. The biological behaviour 
is quite similar during each functional state. At the second 
hierarchical level some numeric detection algorithms and/or 
rules based on expert knowledge can be used for the 

Table 1. Cultivation parameters. 
 

Parameter t0 Xγ (t0) Sγ (t0) V(t0) 
inSγ  

spSγ  

cultivation 1 4.30 h 3.20 g/l 0.78 g/l 2.70 l 500 g/l 0.2 g/l

cultivation 2 3.10 h 3.20 g/l 0.5 g/l 2.7 g/l 500 g/l 0.1 g/l
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recognition of the functional states and state transitions 
(Zhang et al. 1994). In many batch-type processes, the 
functional states would be naturally identified with the 
different phases of the process. In a fed-batch or continuous 
process, the situationis more complex, but some functional 
states can be recognized and some functional state models 
can be used (Shimizu et al. 1996; Takiguchi et al. 1997). 

 
The next step after the identification of the local models is 
the choice of a certain optimization procedure for parameter 
estimation. Nowadays the most common methods used for 
global optimization are evolutionary algorithms such as 
genetic algorithms. Genetic algorithms (GA) are direct 
random search technique, based on the mechanics of 
natural selection andgenetics, which can find the global 
optimal solution in complex multidimensional search 
spaces. These algorithms are proved to be very suitable for 
the optimization of highly non-linear problems with many 
variables. Recently, genetic algorithms have been 
extensively used for the solution of many optimization-
searching problems (Goldberg, 1989; Na et al. 2002). 
Compared with the conventional optimization methods, GA 

do not assume that the search space is differentiable or 
continuous. GA do not require linearity in the parameters as 
well which is necessary for iterative searching optimization 
techniques. All those properties and advantages make GA 
suitable for the parameter identification of cultivation 
processes. Many authors have reported for successful 
implementation of genetic algorithms in this field 
(Ranganath et al. 1999; Kim et al. 2002; Jeong et al. 2005; 
Tochampa et al. 2005). Ranganath et al. has demonstrated 
that GA is able to estimate the parameters of nonlinear 
system like fed-batch fermentor for which recursive least 
squares cannot be used (Ranganath et al. 1999). The 
authors used small population size (30 chromozomes) and 
therefore the algorithm is needed of 1500 iterations for 
evaluation. As an appropriate identification tool Roeva et 
al. have presented genetic algorithms used for E. coli 
MC4110 cultivation model parameters estimation (Roeva et 
al. 2004; Roeva, 2005). In these studies the authors have 

 
Figure 1. The expression mechanism of the intracellular phytase. 

Table 2. Rules for functional states recognition. 
 

State Rule 

I Sγ  > 
critSγ  and DOw  > 

critDOw  

II Sγ  ≤ 
critSγ , DOw  ≥ 

critDOw  and Aγ  > 0

III Sγ  ≤ 
critSγ , DOw  ≥ 

critDOw  and Aγ  = 0

IV Sγ  < 
critSγ , DOw  < 

critDOw  and Aγ  > 0

V Sγ  > 
critSγ  and DOw  < 

critDOw  

 
Figure 2. Fermentative metabolism of E. coli from 
glucose.
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used number of iterations and of individuals in a range of 
100-200. The same parameters are used for models 
identification of methane fermentations (Kim et al. 2002; 
Jeong et al. 2005). In a lot of publications researchers have 
mainly used the following genetic parameters: crossover 
probability - 0.6-0.7; mutation probability - 0.02-0.05; 
generation gap - 0.85-0.99 (Ranganath et al. 1999; Kim et 
al. 2002; Jeong et al. 2005). 
 

The main purpose of the paper is the development of a 
mathematical model of E. coli BL21(DE3)pPhyt109 fed-
batch cultivation for bacterial phytase extracellular 
production, based on the application of the multiple model 
approach. An estimation of the models' parameters is 
performed using Genetic Algorithm Toolbox procedures, 
especially multi-population genetic algorithm. 
 
MATERIALS AND METHODS 
 
The paper illustrates the concept of multiple model 
approach to modelling of a cultivation of E. coli for an 
extracellular production of bacterial phytase. The 
cultivation details (bacterial strain, culture medium and 
cultivation of bacteria), on-line and off-line methods, and 
experimental data have been published previously (Miksch 
et al. 2002; Kleist et al. 2003; Arndt et al. 2004). Short 
description of the considered here cultivation process is 
given below. 
 
Fed-batch cultivation of Escherichiacoli 
BL21(DE3)pPhyt109 
 
E. coli strain BL21(DE3)pPhyt109 is used for cultivation 
experiments. The experiments are performed in the 
Department of Fermentation Engineering, Faculty of 
Technology, University of Bielefeld. Plasmid pPhyt109, an 
expression vector derived from the multi copy plasmid 
pUC19, contains the gene for E. coli phytase under the 
constitutive promoter of the bglA gene of Bacillus 
amyloliquefaciens. In addition, the expression vector 
contained a secretion cassette of 2.5 kb providing the 
competence for the secretion of pythase into the culture 

Table 3. Parameter functions of the local models in E. coli cultivation. 
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function Functional state I Functional state IV Functional state V 
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Figure 3. Generational loop of a multi-population genetic 
algorithm. 



Multiple model approach to E. coli BL21(DE3)pPhyt109 fed-batch cultivation 

 596

medium based on the action of the Kil protein expressed 
under the control of the stationary-phase promoter of the fic 
gene (Kleist et al. 2003). The expression mechanism of the 
intracellular phytase is schematically presented in Figure 1. 
 
Cultivation experiments are carried out in a bioreactor with 
a total volume of 7 l and a working volume of 5 l. The 
bioreactor is equipped with direct digital control (DDC) 
from MBR (Multiple Bioreactors and Sterile Plants, Zurich, 
Switzerland). Glucose mineral salt medium is used as 
growth medium. The pH is maintained at 6.9 by controlled 
addition of 4 N NaOH. Antifoam (PE8100, BASF, 
Germany) is added automatically when required. The 
temperature is kept at 37ºC. Air flow is kept constant at 10 l 
min-1. The stirrer speed is kept constant at 500 rpm. 
 

Two experimental data sets are obtained and used for the 
modelling of E. coliBL21(DE3)pPhyt109 cultivation. In the 
first set, used for models' parameter estimation, the 
substrate concentration is kept at set point 

spSγ  = 0.2 g/l. 

The second set of experimental data, where the substrate 
concentration is kept at set point 

spSγ  = 0.1 g/l, is used for a 

model verification. The initial parameters of the considered 
cultivation processes are presented in Table 1. 
 
Process modelling using multiple model approach 
 
Modelling of bioprocesses has lead to practicing engineers 
being faced with problems of increasing complexity. The 
standard approach to complex problem solving is the 
applying of the divide-and-conquer strategy. A complex 
problem is somehow partitioned into a number of simpler 
sub-problems that can be solved independently and which 
individual solutions yield the solution of the original 
complex problem. The key to successful problem solution 
by this approach is to find suitable axes along the problem 
that can be partitioned. Operating regime decomposition 
has recently attracted significant attention. Operating 

regime method leads to multiple model approaches, where 
different local models are applied under different operating 
conditions. Each model has a limited range of operating 
conditions in which it is sufficiently accurate or performed 
sufficiently well in order to serve its purpose. This range 
could be restricted by several factors, such as modelling 
assumptions, stability properties or experimental 
conditions. A model which is useful in a region less than 
the full range of operating conditions is called a local 
model, as opposite to a global model which is useful over 
the full range of operating conditions (Murray-Smith and 
Johansen, 1997; Petridis and Kehagias, 1998; Kordon et al. 
1999). 
 
Functional state modelling approach is originally presented 
(Zhang et al. 1994) for a fed-batch yeast cultivation. In 
general, fermentative metabolism is not the same in all 
microorganisms, but there are many similarities. Nielsen 
and Villadsen (Nielsen and Villadsen, 1994) have 
illustrated the analogy in the fermentative metabolism of 
yeasts and E. coli. The fermentative metabolism of E. coli 
is presented in Figure 2. Therefore, this is the precondition 
to implement the multiple model approach based on 
functional states for E. coli cultivation. According to the 
local models described by Zhang et al. 1994, this approach 
is applied for E. coli fed-batch cultivation. 
 
The whole E. coli growth process can be divided into at 
least four functional states, according to the physiological 
behaviour of the microorganisms in the process (Zhang et 
al. 1994; Xu et al. 1999a; Xu et al. 1999b; Zelic et al. 
2004). 
 

• The first functional state (I) is the first acetate 
production state. The process is defined to be in 

Table 4. Operators of genetic algorithm. 
 

Operator Type 
encoding binary 
crossover double point 
mutation bit inversion 
selection  roulette wheel selection 

fitness function linear ranking 

 
Figure 4. Recognition of functional states during 
Escherichia coli fed-batch cultivation. 

 
Table 5. Parameters of genetic algorithm. 

 
Parameter Value 

generation gap 0.97 
crossover rate 0.70 
mutation rate 0.05 

precision of binary representation 20 
migration rate 0.20 
insertion rate 0.90 

number of subpopulations 10 
number of individuals 100 

number of generations 1000 
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this state when the sugar concentration is above 
the critical level (

critSγ ) and there is sufficient 
dissolved oxygen. In this state acetate is produced 
because of high level of glucose.Тhis process is 
energetically unfavorable for the cell but since the 
level of sugar is high it can still supply enough. 
The cell that is modified to produce phytase using 
artificial vector (pPhyt109) is in appropriate 
conditions for high phytase production. More 
energy activates the biosynthetic pathways in the 
cell and this leads to acceleration of the phytase 
production. 

 
• The second functional state (II) is the mixed 

oxidative state. The process enters this state when 
the sugar concentration decreases to be equal or 
below the critical level and there is sufficient 
dissolved oxygen in the broth. Both sugar and 
produced acetate are cometabolised through the 
oxidative pathways in the state. In this state the 
cometabolising of the acetate and glucose leads to 
the utilization of more resources by the cell. The 
acetate metabolism process is with priority and 
this will lead to lower production of phytase in the 
cell compared to the first functional state. 

 
• The third functional state (III) is the complete 

sugar oxidative state. The process is defined to be 
in this state when there is no acetate available, the 
sugar concentration is not higher than the critical 
level and the dissolved oxygen is above its critical 
level (

critDOw ). In this state, sugar is completely 
oxidised to water and carbon dioxide. Here the 
complete oxidation of the substrate and the 
absence of side pathways activation provide 

enough energy for the phytase production. 
 

• The fourth functional state (IV) is the second 
acetate production state. The conditions for this 
state are that both concentrations, for sugar and for 
dissolved oxygen, to be below the corresponding 
critical levels. When the dissolved oxygen 
becomes limiting factor for micrioorganisms 
growth, acetate is produced. There are good 
opportunities for cell growth and activation of side 
anabolism pathways. Here the growth rate is 
higher than all other functional states and acetate 
levels are varying exponentially. These conditions 
will lead to lower phytase production. 

 
Based on the above mentioned state description, the rules 
for recognition of functional states (Zhang et al. 1994) are 
summarized in Table 2. 
 
Mathematical model 
 
The following assumptions are made in the local models 
development of the fed-batch cultivation of E. coli: 
 

• The bioreactor is completely mixed. 
 
• Potential mixing effects of the highly concentrated 

feeds with the cultivation medium are neglected 
for the sake of the model simplicity. 

 
• The suspension viscosity in the reactor remains 

constant during the experiment. 
 
• The main products in a cultivation of E. coli are 

biomass, phytase, water, carbon dioxide and, 
under some conditions, acetate. 

 
• The substrate (glucose) is consumed mainly 

oxidatively. 
 

• Variations in the growth rate, acetate and phytase 
production, as well as in substrate consumption do 
not significantly change the elemental composition 
of biomass, thus balanced growth conditions are 
only assumed. 

 
• For a simplification, the phytase production is 

regarded as a one-step enzymatic reaction. 
 

• Parameters, e.g. pH and temperature, are 
controlled to certain acceptable constant values 
during the process. 

 
The rates of cell growth, sugar consumption, acetate and 
phytase production and dissolved oxygen concentrations in 
a fed-batch cultivation of E. coli are commonly described 
for all operating regimes (functional states) according to the 
mass balance as follows: 

 
Figure 5. Simulation results and experimental data for all 
recognized functional states: concentration of biomass. 
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where: γX is the concentration of biomass, g/l; γS - 
concentration of substrate (glucose), g/l; γA - concentration 
of acetate, g/l; γP - concentration of phytase, g/l; wDO - mass 
fraction of dissolved oxygen, %; µ - specific growth rate, h-

1; qS, qA, qP, qDO - specific rates of substrate utilization, 
acetate formation, phytase formation and oxygen 
consumption, h-1; kLa - volumetric oxygen transfer 
coefficient, h-1; Q - influent flow rate, h-1; V - bioreactor 
volume, l; 

inSγ  - influent glucose concentration, g/l; wDO* - 
saturation mass fraction of dissolved oxygen, %. The 

parameter functions for µ, qS, qA, qP, qDO in equations [1]-
[5] vary in connection with the recognized functional states 
(Table 3). 
 
Estimation of models parameters 
 
For the estimation of model parameters off-line 
measurements of biomass, substrate (glucose), acetate, 
phytase, as well as on-line data for dissolved oxygen from 
E. coli fed-batch cultivation, are used. Within Matlab 5.3 
environment a simulink model of the considered process 
has been developed. The Simulink model described by the 
differential equations [1]-[6], taking into account the 

Table 6. Numerical values of the local model parameters. 
 

Functional State I Functional State IV Functional State V 

Parameter Value Parameter Value Parameter Value 

µ1 0.52 h-1 µ4 0.58 h-1 µ5 0.54 h-1 

µА - µА 0.10 h-1 µА 0.14 h-1 

kS 0.076 g/l kS 0.006 g/l kS 0.04 g/l 

kP 0.10 g/l kА 0.51 g/l kА 0.10 g/l 

kDO 0.10% kDO 0.006% kDO 0.04% 

YS/X 0.16 gg-1 YS/X 0.45 gg-1 YS/X 0.18 gg-1 

YА/X 0.56 gg-1 YА/X 0.51 gg-1 YА/X 0.62 gg-1 

YР/Х 0.23 gg-1 YР/Х 0.54 gg-1 YР/Х 0.28 gg-1 

YDO/Х 0.45 gg-1 YDO/Х 0.49 gg-1 YDO/Х 0.42 gg-1 

kLa 178.01 h-1 kLa 179.21 h-1 kLa 179.88 h-1 

 

 
Figure 6. Simulation results and experimental data for all 
recognized functional states: concentration of glucose. 
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process parameters and the initial variable values. In order 
to identify the kinetic parameters in the Simulink model, a 
script containing necessary instructions for the genetic 
algorithm Toolbox has been also developed. The Matlab 
code for the generational loop of the multi-population GA 
is listed in Figure 3. 
 
To implement the genetic algorithms, the models' 
parameters have to be parameterised in terms of 
chromosomes. Each chromosome corresponds to different 
objective function value. The objective function is used to 
provide a measure of how individuals have performed in 
the problem domain. In the case of minimization problem, 
the fitted individuals will have the lowest numerical value 
of the associated objective function. This raw measure of 
fitness is only used as an intermediate stage in determining 
the relative performance of individuals in genetic 
algorithms. The selection algorithm chooses individuals for 
reproduction on the basis of their relative fitness. The 
genetic algorithms are terminated when some criteria are 
satisfied. Here the termination criterion is the number of 
generations. 
 
To receive better results, a single population genetic 
algorithm can be obtained by introducing many 
populations, called subpopulations (Goldberg, 1989). These 
subpopulations evolve independently from each other for a 
certain number of generations (isolation time), like the 
single population genetic algorithm. After the isolation time 
a number of individuals is distributed between the 
subpopulations (migration). The migration rate, the 
selection method of the individuals for migration and the 
scheme of migration determines how much genetic 
diversity can occur in the subpopulations and the exchange 
of information between subpopulations.The most general 
migration strategy is that of unrestricted migration 
(complete net topology). Here, individuals may migrate 
from any subpopulation to another. For each subpopulation, 

a pool of potential immigrants is constructed from the other 
subpopulations. The individual migrants are then uniformly 
at random determined from this pool. The multi-population 
genetic algorithm models the evolution of a species in a 
way more similar to nature than the single population 
genetic algorithm. 
 
The choice and adjustment of genetic algorithm operators 
and parameters were done with the criterion in order to be 
found the best solution with the best speed. Based on the 
results in (Szczerbicka et al. 1998; Roeva et al. 2004; 
Roeva, 2005), genetic algorithm operators and parameters 
for considered parameter estimation are summarized in 
Table 4 and Table 5. 
 
The parameter estimation problem was stated as the 
minimization of a distance measure J between experimental 
and model predicted values of the state variables (γX, γS, γA, 
γP, wDO): 
 

( ) ( ){ }
2

1 1

n m

exp mod j
i j

J i i minγ γ
= =

⎡ ⎤= − →⎣ ⎦∑∑  [7] 

 
where: J is the optimization criterion; γexp, γmod - 
experimental and model data vectors; n - number of 
measurements for each state variable; m - number of state 
variables. 
 
RESULTS AND DISCUSSION 
 
In this work the system's full range of operation was 
decomposed into a number of possibly overlapping 
operating regimes, called functional states. In each 
functional state, a simple local model was applied. These 
local models were then combined in a way to yield a global 

Figure 7. Simulation results and experimental data for all 
recognized functional states: concentration of acetate. 

 
Figure 8. Simulation results and experimental data for all 
recognized functional states: concentration of phytase. 
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model. Hence, the model development within this approach 
is typically consisted of the following tasks: 
 

• Decomposition of the system's full range of 
operation into functional states. 

 
• Selection of simple local model structures within 

each functional state. These structures could be 
often determined by the relevant system 
knowledge that is available under different 
operating conditions, as well as from the intended 
purpose of the model. 

 
• Parameterization of the local model structures by 

certain variables and carrying out of parameter 
identification. 

 
Based on experience (Kleist et al. 2003; Arndt et al. 2004) 
carried out the E. coli cultivations, the following values for 

critSγ  and 
critDOw  are assumed: 

critSγ  = 0.05g/l; 
critDOw  = 

32%. Taking into account the rules in Table 2 and the 
concrete values for 

critSγ  and 
critDOw  for the considered 

fed-batch cultivation of E. coli, two functional states, 
namely I and IV, were recognized. According to Zhang 
(Zhang et al. 1994) in an industrial aerobic growth process 
where oxygen is often limited, there might exist more 
functional states. For instance, a state with conditions of 

DOw  < 
critDOw  and Sγ  > 

critSγ , and a state with Sγ  = 0 

and DOw  < 
critDOw  might be possible. Although in 

laboratory scale cultivations those states do not occur 
frequently, in the considered here E. coli cultivation the 
state with conditions of DOw  < 

critDOw  and Sγ  > 
critSγ  

was identified. This state here was here called fifth 
functional state (V) - state of dissolved oxygen limitation. 
 
The time disposition of the functional states was as follows 
(Figure 4). In the beginning of the cultivation the dissolved 
oxygen concentration was below the corresponding critical 
level and the glucose concentration was above its critical 
level. The process was in V functional state from 4.3 hrs 
(start of the fed-batch cultivation) to 5.6 hrs cultivation 
time. In the next nearly four hrs - from 5.6 hrs to 9.2 hrs 
cultivation time, IV functional state was identified. The 
process was entered this state when the concentrations of 
dissolved oxygen and substrate were below the 
corresponding critical levels. At the end of the cultivation, 
from 9.2 hrs to 14 hrs cultivation time, both the dissolved 
oxygen and the glucose concentrations were above the 
corresponding critical levels, so the process was in I 
functional state. 
 
It should be noted that a fermentation process could only be 
in one functional state at any time. However, a certain 
functional state can appear in the process more than once 
during one run or do not appear at all. It is not obligatory all 
functional states, describing the physiological behaviour of 
the microorganisms, to appear during one cultivation. In the 
considered case only three functional states were identified. 
 
At the second step, according to the specific functional state 
of the E. coli cultivation, various structures of local models 
were determined. Different model structures were tested. 
Modelling studies were performed to identify simple, easy-
to-use models which to be suitable to support the 
engineering tasks of process optimization and control. The 
results from identification procedures (determination of the 
specific rates in local models) can be generalized as 
follows: 

 
Figure 9. Simulation results and experimental data for all 
recognized functional states: concentration of dissolved 
oxygen. 

 
Figure 10. Recognition of functional states during Escherichia 
coli fed-batch cultivation data set used for local models 
verification. 
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• Monod kinetics was used for specific growth rate 
and specific sugar consumption rate in all 
identified functional states. The results showed 
that for the states IV and V the model, in which 
the phytase production is proportional to the 
specific growth rate, described in a better way the 
experimental data. High quality results for the 
functional state I were achieved by the specific 
phytase rate using Monod kinetics according to the 
phytase concentration (Table 3). 

 
• A multiplication of two Monod kinetics was 

proposed for the description of acetate variation in 
the state V, while in the IV functional state Monod 
kinetics according to acetate was applied. For 
description of the state I the specific rate of acetate 
production was proposed to be proportional to the 
specific growth rate. Considered model structures 
fit quite well the dynamics of the acetate. 

 
• In all identified functional states the variation of 

dissolved oxygen was described by Monod 
kinetics according to dissolved oxygen. The 
proposed model is simple and describes 
successfully the experimental data for dissolved 
oxygen concentration. 

 
The best identification results for the local models 
structures of process variables were obtained for the 
suggestions presented in Table 3. In the presented table µ1, 
µ4, µ5, µA are maximum values of the specific growth rates, 
h-1; γS/X, γA/X, γP/X, γDO/X - yield coefficients, g/g; kS, kA - 
saturation constants, g/l; kDO - saturation constant, %. 
 
Each local model contains set of definite number of model 
parameters that have to be defined, namely: 
 
Functional state I              µ1, kS, kP, γS/X, γA/X, γP/X, γDO/X, kLa; 
Functional state IV     µ4, µA, kS, kA, γS/X, γA/X, γP/X, γDO/X, kLa; 
Functional state V      µ5, µA, kS, kA, γS/X, γA/X, γP/X, γDO/X, kLa. 
 
Obtained results from the model parameters identification 
are presented in Table 6. As it could be seen, parameters 
values in the different functional states are different. As it is 
well known, the parameters of the fermentation processes 
models, and particularly in the cultivation of E. coli 
BL21(DE3)pPhyt109, are time-varying. The use of global 
process models could not reflect this fact, while the 
multiple model approach allows taking into account time-
varying of parameters as it is shown in Table 6. In this way 
an adequate and more precise model is obtained. 
 
Both the real cultivation trajectories and the simulated ones 
are presented in Figure 5, Figure 6, Figure 7, Figure 8 and 
Figure 9. Figures show the dynamics of the biomass, 
glucose, acetate, phytase and dissolved oxygen 
concentrations for all recognized functional states (I, IV 
and V). The initial values for the simulation in the new 

functional state are the last simulated values in the previous 
functional state so that the trajectories have been 
continuous. 
 
Obtained results clearly showed that the developed local 
models described the process dynamics in a high degree of 
accuracy. The proposed local models structures for each 
specific rate, relate to the corresponding functional state, fit 
quite well the experimental data. All assumptions about the 
model structures and the model parameters were confirmed. 
One more step to validate the developed model was to 
verify the model with the independent set of experimental 
data. 

 
Model verification 
 
For the model verification was used the second data set of 
E. coli BL21(DE3)pPhyt109 fed-batch cultivation with 
glucose set point 0.1 g/l. 
 
The glucose and dissolved oxygen concentrations in the 
second data set of E. coli cultivation are presented in Figure 
10. Based on the considered critical concentrations for 
glucose and dissolved oxygen and the rules listed in Table 2 
three functional states were recognised. In the beginning of 
the cultivation, from 3.1 hrs to 8.15 hrs cultivation time was 
identified the functional state I, from 8.15 hrs to 13.97 hrs 
cultivation time - functional state V, and at the end of the 
process, from 13.97 hrs to 17 hrs cultivation time - again 
functional state I. 
 
The developed local models for I and V functional state 
were tested for a prediction of the corresponding functional 
state behavior in the second data set. As a model input the 
feeding rate of the second cultivation was used and the 
corresponding initial conditions were taken into account. 

 
Figure 11. Simulation results from model verification for all 
recognized functional states: biomass and glucose. 
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The simulation results from the model verification are 
presented in Figure 11 and Figure 12. 
 
As it can be seen the results from verification are good, 
with the exception of the glucose dynamics. The largest 
mismatch between experimental dataused for verification 
and developed model was namely regarging to the substrate 
concentration. In case that the verification of rest process 
variables is acceptable, the failure in the glucose prediction 
argues for inaccurate data (noise, inexact analysis, wrong 
measurements, etc.). Moreover the model was developed 
based on data set from cultivation where the glucose was 
kept at value of 0.2 g/l and the data for verification are from 
cultivation with set point 0.1 g/l. This is also a preposition 
that the model could not predict the process with a high 
accuracy. Except unsatisfactory results about the glucose 
prediction, the rest of the results give a reason to conclude 
that the verification of the developed model was 
successfully fulfilled. 
 
CONCLUDIND REMARKS 
 
Based on the application of the multiple model approach, 
mathematical local models of E. coli BL21(DE3)pPhyt109 
fed-batch cultivation for a bacterial phytase extracellular 
production are developed. There exists a clear metabolic 
basis for the division into different functional states, so the 
characteristic dynamics in each state can be modeled with 
local models. To illustrate the concept of functional states, 
experimental data of a fed-batch cultivation of E. coli is 
used. In the considered process three functional states, 
namely I, IV and V are recognized. The simple structures of 
local models are identified for the purposes of further high 
quality control of E. coli fed-batch cultivation. Therefore, 
the variation of specific rates is mainly described by 
Monod's kinetics due to further control use.The local model 

parameters are obtained using multi-population genetic 
algorithms. The parameter estimations show that the 
multiple model approach allows taking into account time-
varying of parameters, while the use of global process 
models could not reflect this fact. The presented 
simulations demonstrate the effectiveness of both applied 
concept of the multiple model approach and proposed 
identification scheme. Model verification validates the 
developed local models and presented concept of functional 
states. The obtained results indicate that the multiple model 
approach can help in better understanding of the process 
behavior and simplify the process modelling. 
 
Further investigations could be focused on modelling of 
non-growth associated product formation and kinetics of 
inhibition effects. The presented results indicate the 
presence of non-growth associated product formation. 
Namely, in functional state I the observed rate of phytase 
production (Figure 8) seems to be higher than the observed 
rate of biomass formation (Figure 5). An object for the 
future investigations will be modelling of product (phytase) 
and substrate (acetate) inhibition and development of 
kinetic models as model alternatives to the presented local 
models. 
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