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We developed 15 novel polymorphic microsatellites for 
the Pacific oyster Crassostrea gigas by screening genes 
and expressed sequence tags (ESTs) found in GenBank. 
The number of alleles per locus ranged from two to 24 
with an average of 8.7, and the values of observed 
heterozygosity (Ho) and expected heterozygosity (He) 
ranged from 0.026 to 0.750 and from 0.120 to 0.947, 
respectively. No significant pairwise linkage 
disequilibrium was detected among loci and eight loci 
conformed to Hardy-Weinberg equilibrium. 
Transferability of the markers was examined on five 
other Crassostrea species and all the markers were 
amplified successfully in at least one species. These new 
microsatellites should be useful for population genetics, 
parentage analysis and genome mapping studies of C. 
gigas and closely related species. The nine markers 
identified from known genes are expected to be 
especially valuable for comparative mapping as type I 
markers. 

The Pacific oyster, Crassostrea gigas, naturally distributed  
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in Japan, China and Korea, has become a worldwide 
aquaculture species because of its fast growth rate, high 
disease resistance and adaptability to different 
environments. It has had the highest worldwide production 
of any cultured aquatic species since 1993; in 2006, world 
production of this species was 4.6 million metric tons (Food 
and Agriculture Organization, 2008). Still, oysters are in an 
early stage of domestication. To improve the increasingly 
valuable Pacific oyster industry, genetic improvement 
programs have been initiated in several countries (Langdon 
et al. 2003), and to date two genetic linkage maps that 
would facilitate marker-assisted selection, quantitative trait 
locus (QTL) mapping, and functional genomic research 
have been developed using amplified fragment length 
polymorphism (AFLP) (Li and Guo, 2004), and 
microsatellite markers (Hubert and Hedgecock, 2004). 
However, the AFLP maps are poorly transferable, and the 
microsatellite map is only moderately. There is a great need 
for developing codominant markers in the Pacific oyster. 

Microsatellites, or simple sequence repeats (SSRs), are  
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extremely useful markers for genetic linkage mapping 
because of their high polymorphism, abundance, 
codominance and small length, which facilitates genotyping 
using polymerase chain reaction (PCR) (Liu et al.1999; 
Wang et al. 2007). For C. gigas, numerous microsatellites 
have been developed recently (Li et al. 2003). But, the pace 
of development has been limited by the time-consuming 
and labor intensive requirement to construct, enrich and 
sequence genomic libraries (Edwards et al.1996). Recently, 
identification of microsatellites from expressed sequences 
has been extensively used as an alternative strategy. In 
addition to requiring less time and money to develop, 
expressed sequence tags (EST)-derived microsatellites have 
a number of intrinsic advantages. They tend to be more 
widely transferable between species, and even genera 
(Bouck and Vision, 2007). More importantly, because they 
represent genes, they serve as type I markers, which are 
more valuable for comparative gene mapping (Liu et al. 
1999). To date, a large number of EST-SSRs have been 
successfully developed from public sequence databases in 
several aquatic animals, including fish (Serapion et al. 
2004), shrimp (Perez et al. 2005), sea urchin (Kong and Li, 

2008) and molluscs such as the Eastern oyster (Wang and 
Guo, 2007) and Pacific oyster (Yu and Li, 2007; Yu and Li, 
2008; Wang et al. 2008; Sauvage et al. 2009). Although 
detection of microsatellites within ESTs generates potential 
type I markers (Serapion et al. 2004), usually only a small 
proportion of EST-SSRs shows high identity to previously 
annotated genes in aquatic species. For example, 16 of 65 
(24.6%) showed high identity to annotated genes and was 
confirmed as type I markers in Atlantic salmon, and similar 
results have been reported for Eastern oyster (32.1%) and 
Pacific oyster (37.5%) (Ng et al. 2005; Wang and Guo, 
2007; Yu and Li, 2008). In contrast, microsatellites 
identified from known genes are all type I markers. The 
identification of specific SSRs in known genes permits not 
only the location of the genes in linkage maps, but also the 
unraveling of the biological significance of SSR 
distribution, expansion, and contraction on the function of 
the genes themselves (Li et al. 2004). In the present study 
we report the identification of microsatellites within all 
known genes and ESTs from C. gigas, as well as their 
characterization and cross-species amplification in five 
other commercially important Crassostrea species. 

Table 1. Characterization of 15 novel polymorphic microsatellites within genes and ESTs for the Pacific oyster Crassostrea gigas. 
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MATERIALS AND METHODS 

All the Pacific oyster gene sequences and 1168 EST 
sequences were downloaded from GenBank (NCBI, 
http://www.ncbi.nlm.nih.gov/sites/entrez). The 
SSRHUNTER program (Li and Wan, 2005) was used to 
search for SSRs. The criteria used in SSRHUNTER to 
identify SSRs were as follows: five repeats for di-, tri- and 
tetranucleotide repeats. EST sequences containing 
microsatellites were assembled using SeqMan II sequence 
assembly software (DNASTAR Inc. Madison, USA) for 
clustering analysis. Sequences containing SSRs were 
annotated using BLAST software. Primers flanking 
microsatellites were designed using the Primer Premier 5.0 
program. 

To evaluate polymorphism, 40 individuals of C. gigas 
collected from coastal waters in Hiroshima, Japan, were 
used. Genomic DNA was extracted from adductor muscle 
by standard proteinase K digestion, phenol-chloroform 
extraction, and DNA precipitation. PCRs were performed 
in 10-μL volumes containing 0.25 U Taq DNA polymerase 
(Takara Inc.), 1 x PCR buffer, 0.2 mM dNTP mix, 1 μM of 
each primer set, 1.5 mM MgCl2 and about 100 ng template 
DNA. PCR was performed on a GeneAmp 9700 PCR 
System (Applied Biosystems) as follows: 3 min at 94ºC; 35 
cycles of 1 min at 94ºC, annealing (Table 1, annealing 
temperatures) for 1 min, 72ºC for 1 min per cycle; followed 
by 5 min at 72ºC. Amplification products were resolved via 

6% denaturing polyacrylamide gel, and visualized by 
silver-staining. A 10-bp DNA ladder (Invitrogen Inc.) was 
used as a reference marker for allele size determination. 
The number of alleles (Na), expected heterozygosity (He) 
and observed heterozygosity (Ho) were calculated using 
Microsatellite Analyser software (Dieringer and 
Schlötterer, 2003). Tests for linkage disequilibrium and 
deviations from Hardy-Weinberg equilibrium (HWE) were 
performed using the GENEPOP program. Significant levels 
were calculated per locus using sequential Bonferroni 
method (Rice, 1989). 

RESULTS AND DISCUSSION 

A total of 327 gene sequences and 1168 EST sequences 
were screened for microsatellite repeats, from which 21 
gene sequences and 37 EST sequences harbored 
microsatellite-type repeats. From the sequences containing 
microsatellites, 41 primer pairs were designed for 
microsatellite marker optimization. Of the 41 primer pairs, 
12 were not easily amplified, 14 were monomorphic 
(Appendix A) and 15 produced polymorphic profiles of the 
expected size. All these loci are different from the 
published EST-SSRs (Yu and Li, 2007; Yu and Li, 2008; 
Wang et al. 2008; Sauvage et al. 2009). Characterizations 
of these polymorphic loci are summarized in Table 1. The 
numbers of alleles ranged from 2 to 24 with an average of 
8.7 alleles per locus. The observed and expected 
heterozygosities ranged from 0.026 to 0.750 and from 

Table 2. Cross-species amplification of 15 microsatellites from C. gigas  in five other Crassostrea species including C. 
plicatula, C. hongkongensis, C. ariakensis, C. nippona  and C. sikamea. 
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0.120 to 0.947, respectively. No significant pairwise 
linkage disequilibrium was found among loci. Seven of the 
15 microsatellites significantly deviated from the HWE 
after correction for multiple tests, and all of them showed 
heterozygote deficiency. We used MICRO-CHECKER 
(Van Oosterhout et al. 2004) to estimate the most probable 
cause for departures from HWE. The MICRO-CHECKER 
analysis suggested there were no indications for scoring 
error due to stuttering or for large allele dropout. All the 
seven loci were prone to null alleles (P < 0.01). In fact, null 
alleles are very common in the Pacific oyster (Li et al. 
2003; Hedgecock et al. 2004); due to extremely high levels 
of DNA sequence variation. 

Among the 15 polymorphic markers, nine were identified 
from known genes, and the other six from ESTs. GenBank 
(BLASTX) searches indicated that the six SSR-bearing 
ESTs had no significant matches to genes of known 
functions at E values less than 10-4. The nine microsatellites 
derived from known genes are all type I markers. Of them, 
six were located in introns, two (CGG007 and CGG009) in 
the 3′ untranslated region (3′UTR), and one (CGG002) in 
the non-transcribed spacer (NTS) of 5S ribosome RNA 
gene (Table 1). Goldstein and Schlötterer (1999) suggest 
that null alleles in EST-derived SSRs are usually lower than 
in genomic SSRs due to lower mutation at spicing sites. 
The fact that all the microsatellites from known genes are 
located at non-coding sequences might be responsible for 
high frequency of null alleles (7 of 15 or 46.7%) detected in 
this study. 

Cross-species amplification was examined in five other 
Crassostrea species, including C. plicatula, C. 
hongkongensis, C. ariakensis, C. nippona and C. sikamea, 
which were collected from their typical habitats. C. 
plicatula and C. hongkongensis were collected from Fujian 
and Guangxi provinces in China, respectively; C. 
ariakensis and C. nippona were sampled from the Sea of 
Ariake and Okatsu Bay, Japan; C. sikamea which 
originated from Japan were collected from Newport, 
Oregon, USA. Thirty individuals of each species were used 
for the examination of the transferability of genic 
microsatellites. All the primer sets amplified successfully at 
least one species, with C. plicatula and C. sikamea sharing 
14 primer pairs, C. hongkongensis and C. nippona 12, and 
C. ariakensis 11, indicating the high rate of transferability 
across Crassostrea species (Table 2).  

In summary, these genic SSR markers showed adequate 
level of polymorphism and high rate of transportability. 
Thus, they can be used as molecular markers for population 
genetics, pedigree analysis, and genome mapping studies 
not only in the Pacific oyster but also in related species. 
The ones located in genes, as type I markers, are expected 
to be especially useful for mapping these genes in linkage 
maps and comparative mapping. 
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APPENDIX 

 
Appendix A. Primer sequences, repeat types and annealing temperatures for 26 unamplified and monomorphic 
microsatellite loci in this study. 

 

 
Ta, optimal annealing temperature (°C). 


