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The systematic study of the genetic fingerprint 
(genomics) and the biochemistry (metabolites) that goes 
with a specific cellular process requires the 
characterization of all the small molecules that form the 
profile of metabolites and the associated genes. The 
metabolome represents the collection of all the 
metabolites during certain process in an organism. The 
transcriptome represents the gene expression profile, all 
the messengers RNA in a defined condition. Then to 
understand the whole process, the studies of metabolites 
must be accompanied with studies of the gene 
expression, hence the metabolome must be accompanied 
by the transcriptome, so we can identify genes and 
metabolites whose synthesis is induced by a specific 
process, an infection or stress. Studies of metabolomics 
generate an enormous amount of data, then they need 
mathematical and computational tools to establish the 
correlations between the biochemical and genetic data, 
and to build up networks that represent the complex 
metabolic interactions that occur in each case, using 
tools like Graph and Networks Theory to elucidate the 
emergent properties inherent to the complex 
interactions of the metabolic maps. This paper describes 
the major mathematical tools that can be used for these 
studies, with emphasis on a semi-qualitative proposal 
known as the kinetic structural model. 

The systematic approach as a tool for the study of 
metabolism 

For a reasonable, objective and complete vision of our 
external world a connection between our senses, our minds 
and nature is necessary. In order to make this connection, 
we generally make use of abstract structures known as 
“Models”. The mathematical diagramation of these models 
in formal systems or maps allows us to infer causality and 
make deductions about our environs. A simple 
representation of the components of a system are 
input/output block diagrams. 

ƒ : A → B  [1] 

Where ƒ represents a process, A the input and B the output. 
Clearly, B could be the input for another process and the 
system can thus be visualized as a network (Figure 1) with 
all the possible interactions between the inputs and the 
outputs (Oltvai and Barabási, 2002). This interrelated 
system allows us to study a phenomenon from a holistic 
perspective instead of the separate analysis of each of its 
constituent parts, where (in the holistic perspective) each 
element of the process ƒ represents a bi-functional unit 
whose activity is defined by its context within the model 
and at the same time contributes to that context and thus the 
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Figure 1. Schematic representation of a system. 

environs or superstructure as a whole. From a conceptual 
point of view it is a self-referential system, which means if 
the context or the system is severely disrupted, the 
superstructure, as defined by its functional component or 
components, will cease to exist and the functional 
component will also disappear. Thus the whole is more than 
the sum of its parts, each part having its own semantics and 
its own context (Mikulecky, 2005). 

Metabolism may be understood as a series of interrelated 
chemical-enzymatic reactions that are continually operating 
to maintain vital functions far from the thermodynamic 
equilibrium. Metabolism is a natural phenomenon that may 
be studied from the perspective of ƒ being a metabolic 
process in an organism and A a group of metabolites that 
transform into a group of products B. These branched and 
interconnected reactions (that generate several specific 
products) represent the metabolic pathways. The presence 
or absence of an enzyme along one of these pathways 
varies with the type of cell, tissue or organism and depends 
on its physiological state (nutritional condition, state or 
stress). The behavior of the metabolic network after 
specific variations along some of its pathways and flows is 
difficult to infer, as the cellular response to perturbations 
(genetic or environmental) may involve other networks. 
(For example: cell signaling and transcriptional cascades) 
(Schmidt and Dandekar, 2002; Qi and Ge, 2006). Thus, for 
the study of metabolism, its development and applications 
in biotechnology and metabolic engineering, it is 
fundamental to elucidate the organization and the biological 
significance of the metabolic pathways (Yang et al. 1998). 
This review aims to elucidate the importance of the study of 
metabolism, based on the concept of the network and to 
describe the major mathematical approaches that permit 
modeling the metabolic networks. 

Metabolic networks as a source of information 

As has already been explained, in order to gain a complete 
vision of metabolism, it is necessary to go beyond a simple 
description of its pathways. This global vision could be 
achieved by the study of metabolism based on the network 
concept, whereby the characterization of the relationships 
and interconnections between the elements are taken into 
account rather than simply looking them as a collection of 
interconnecting elements (Lazebnik, 2002). The particular 

way in which the elements are linked should be described 
thoroughly in order to precisely depict the pattern of 
connections, which is known as the network topology. 

In an abstract sense, a network may be described by a graph 
N = (V, E) with a set of elements represented by nodes or 
vertices V such that each node or vertex vi is a member of 
the set V, where i=1, 2, 3… M, and M is the total number of 
nodes or vertices (viÎV). Each pair of nodes define a link 
and these L links also form a set E = (ej) | j = (1,2,3,…,L). 
Otherwise, a network is the relation of the Cartesian 
Product N = V1 x V2 for all pairs of nodes v (vr,vs) | r,s=1, 2, 
3…, M; where again M is the total number of nodes 
network. If the trajectory between two nodes is important 
for its description, each link between two nodes would have 
a particular orientation (Barabási et al. 1999). This type of 
graph is known as a directional graph or digraph and 
characterizes the structure or topology of systems such as 
the metabolic networks (Figure 2). The constitutive 
relations that describe the network elements and the 
topology of the network may be formalized independently 
and then combined to provide a solution to the network 
(Almaas and Barabási, 2006). A network is said to have a 
solution when everything observed within it can be 
specified. When the network is directed (digraph) the 
nature of its solution is a system of pathways that can be 
formulated as a set coupled kinetic differential equations 
that describe the relationships within the network 
(Mikulecky, 2005). 

An incidence matrix I = L x M, where L = nº of links and M 
= nº of nodes, shows the links in the columns and the nodes 

Figure 2. Example of a directed graph (digraph) N 
representing a network R, with M = 6 nodes and L = 10 links. 
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Network models in the study of metabolism 

Figure 3. Incidence matrix I (6 x 10) associated with the 
network illustrated in figure 1. 

in the rows, where the positive 1’s (+1’s) represent the 
incidence of the links that enter a node vs and the negative 
1’s (-1’s) the incidence of the links that leave a node vr. The 
zeros represent the non-incidence (null incidence) between 
links and nodes (Figure 3). The incidence matrix is a 
computational tool that allows the development of 
algorithms that facilitate the calculation of the parameters 
inherent to the network. 

General properties of graphs 

Average degree of a graph. The number of K vertices 
being associated with a node are known as the degrees of 
the network and in the case of a digraph N; K could be 
divided into incoming degrees Ki and outgoing degrees Ko, 
where K = Ki + Ko. The average degree of a homogeneous 
undirected graph is Z = < K > = 2 L/M, since by definition 
each link is joined to two nodes. Nevertheless, in 
heterogeneous graphs, where the nodes do not have the 
same number of links, this value is not valid 

(Fernández and Solé, 2005). 

Nodal distance. The distance between two nodes in a 
graph N is d (vi, vj) and is defined as the smallest number of 
links (shortest path) between two nodes vi and vj. In the 
example illustrated in Figure 2, the pair of nodes (1,6) 
would have d(1,6) = 2 and for the pair of nodes (1,5) d(1,5) 
= 1. 

Mean path length or graph radius (l). This is defined as the 
average distance between any two vertices (vi, vj): 

[2]
 

This equation also describes the average number of steps 
that must be taken from any node in order to pass through 
the entire graph. 

Clustering coefficient. Graphs may show local 
structures, which may be examined by means of the study 
of the average clustering coefficient of a network (C) 
according to the equation: 

1 N 1 N 2EiC = ∑ci = ∑ [3]
N N k k −1)  i=1 i=1 i ( i 

Where ki represents the number of vertices or nodes 
neighboring the i-th vertex of the graph, Ei represents the 
links of the ki and N represents the total number of vertices 
or nodes in the graph. This property gives the density of 

Figure 4. The fundamental differences between a random network (for example an Erdős-Rényi network) and a scale free 
network. a) shows a random network of N = 10 and P = 0.2. This type of network grows with a homogeneous degree distribution, ie., K ≈ 
< K > and the degree function grows in the same way as for a Poisson distribution (c); where most of the nodes (e) have more or less the 
same number of links (red dots) as their neighboring nodes (green dots). (b) In contrast, scale free networks are non-homogeneous, the 
characteristic degree distribution is not peaked and instead approximates a power law (d); these types of network grow preferentially 
around a few nodes “Hubs” -the red dots- where most of the links are concentrated: green dots (f) (Barabási, 2003). 
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Rodríguez, A. and Infante, D. 

Figure 5. The small world effect is an intermediate between a regular and a random network, as can be seen by simulating a 
network of n nodes with k links as a probability function p (Watts and Strogatz, 1998). 

links in the neighborhood of a particular node (Dorogovtsev 
et al. 2003). 

Degree distribution. One of the principal statistics of a 
network is its degree distribution p(k) which describes the 
fraction of nodes that have a certain degree k for a graph N, 
i.e. it indicates the probability p that a randomly selected 
node has k links. For a random graph (RG) the probability 
p(k)of linking two nodes is: 

N−1 
p k = ⎛ ⎞ k ( )  pp 1−( ) ⎜ ⎟k⎝ ⎠  

N− −1 k 
[4] 

When N → ∞ p(k) approximates a Poisson distribution 
where Z = p/N: 

k −z 

p( )  ≈
Z

k
e 
! [5] k 

Many biological phenomena do not adjust to random 
graphs (where the links are uniformly distributed with 
probability p about a mean < K >), since natural networks 
have been observed to show a heterogeneous degree 
distribution where a small number of nodes has a large 
number of links (Wodak et al. 2004). Natural networks, 
such as those described from genetic or metabolic protein-
protein interactions show a degree distribution that adjusts 
to the Bounded Power Law as shown in equation 6: 

-γ − k 
kop k ~(k + k ) e [6]( )  o  

Where k0 is a constant, γ is the degree exponent of the scale 
and depending on the network has values between 2 and 3, 
usually γ = 2.5 and kc is the bounded degree and indicates 
the maximum number of links in the network. These 
networks are known as “scale free” networks and 

essentially mean that the network has a small and finite 
number of highly interconnected nodes (hub nodes) and a 
large number of scantily connected nodes (Barabási, 2003). 
In Figure 4, a random graph (for example, Erdős-Rényi) 
and a scale free graph are compared. 

The value of γ determines several network properties and 
the smaller γ is the more important the hubs nodes are. For 
values of γ > 3 hubs nodes are not important. If 3 > γ > 2, a 
hierarchical organization of hubs nodes appears, where the 
more connected hubs are linked to a small fraction of the 
total number of nodes. When γ = 2, a network emerges 
where the most connected hubs are in contact with a large 
fraction of the total number of nodes. The properties of 
scale free networks are only observed when γ < 3, 
explicitly, when the dispersion of the distribution P(k), 
defined as σ2 = < k2 > – < k >2 increases with the number of 
nodes. When γ > 3, scale free network characteristics do not 
manifest (Barabási and Oltvai, 2004). 

An important property associated with scale free networks 
occurs when new nodes m are preferentially attached with 
probability Π to the most connected nodes i of a pre­
existing network with mo nodes, according to the equation: 

[7]
 

Where ki are the nodes neighboring i. This property is 
known as the Principles of Preferential Addition or 
Barabási-Albert model (Almaas and Barabási, 2006). 

“Small world” effect. Also know as the Watts and 
Strogatz Model or the “small world” effect (analogous to 
the “six degrees of separation” phenomenon described for 
social networks) has been observed in biological networks. 
This phenomenon described for the first time by Stanley 
Milgram, was brought to light in an experiment whereby 
Milgram investigated the number of links that are needed to 
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 in the study of metabolism 

Figure 6. Iterative process in the development of metabolic models. (Adapted from Borodina and Nielsen, 2005). 

connect one person with another within a class or social 
group (writers, actors, etc) and arrived to an estimate of a 
maximum of six degree of social contacts. Small world 
graphs, defined semi-quantitatively, are intermediate 
between random graphs and regular or crystalline ones 
(Figure 5), because they have a small mean path length (l) 
as do random networks, but show a high clustering 
coefficient (C) as do regular networks (Watts and Strogatz, 
1998) (for a quantitative definition see Humphries and 
Gurney (2008)). In these networks the path between any 
pair of nodes is shorter compared to random networks of a 
similar size and connectivity and thus the speed of the 
dissemination of information is higher than in other types 
of network (Alm and Arkin, 2003). 

In general small world networks are characterized by the 
following properties (Newman, 2001): 

1. The local neighborhood of each node is preserved as for 
regular networks. 

2. The network diameter (Shortest average distance 
between pairs of nodes) increases logarithmically with the 
number of nodes. 

3. Thus, small world networks are those that permit the 
connection of two nodes with very few links (Amaral et al. 
2000). 

Emergent properties of scale free networks. The 
study of scale free and small world networks allows the 
perception of characteristics that only appear when 
observed in context, they are not apparent when only 
individual elements are examined. These characteristics are 
known as Emergent Properties. The emergent properties 
associated with scale free and small world networks are: 
Robustness: the sustainability of network functionality in 
spite of the loss of some nodes or links; Preferential 
attachment: nodes new to the network bind with a higher 
probability to hub nodes; Modular Patterns: the emergence 
of groups of nodes with discrete functions, separable from 

the rest of the network and recurring circuit elements: 
Metabolic Networks use regulatory circuits such as 
feedback inhibition in many different pathways. The 
transcriptional network of Escherichia coli has been shown 
to display a small set of recurring circuit elements termed 
“network motifs”. Each network motif can perform a 
specific information processing task such as filtering out 
spurious input fluctuation, generating temporal programs of 
expression or accelerating the throughput of the network. 
(Alon, 2003; Takemoto and Oosawa, 2007). 

Metabolic networks are examples of scale free and small 
world models. In these networks the nodes represent the 
metabolites and the links the enzymatic reactions that 
transform certain metabolites into others. These networks 
are bipartite digraphs: a sub group of nodes M1 ∈ N, the 
substrate, and a sub group of links V2 ∈ N, the product. 

Studies undertaken of the metabolic networks of 43 
organisms (Alm and Arkin, 2003) have found that: 

a) They are scale free networks and non random. 

b) They are small world networks. 

c) They are modular. 

The metabolic networks studied showed a fixed diameter 
that varied very little between organisms. Paradoxically, 
each hub node was linked with a low probability to other 
hub nodes (property known as Dissortativity) and at the 
same time were scale free, since most of the metabolic 
routes were strongly linked to a few nodes with high 
connectivity (property known as Network Hierarchization) 
(Jeong et al. 2000). These results suggest the presence of 
new properties associated with these types of network. 

Although these findings have helped disentangle general 
principles in biological design, the risk of simplifying 
natural processes that are dynamic, evolutionary and 
subject to selective pressure remains. It is thus necessary to 
apply tools that allow the study of these networks over time 
(Schilling et al. 1999; Holme and Huss, 2003). 
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METABOLIC NETWORKS FROM THE 
PERSPECTIVE OF MATHEMATICAL MODELS 

In recent years a huge mass of data has been obtained from 
the “omics” technologies, such as genomics, 
transcriptomics y metabolomics. This information has been 
stored in extensive data bases available on the Internet. The 
study and integrative analysis of these data bases is 
supported by mathematical instruments such as cellular 
models (Fiehn, 2001). The evolution of these tools is an 
iterative process whereby the models are compared with the 
experimental data, which both validate and improve them, 
leading to the formulation of new a posteriori hypotheses 
(Figure 6) (Borodina and Nielsen, 2005). Essentially, these 
models seek to translate the present knowledge of cellular 
components and their interactions into a mathematical 
representation, to provide a precise, formal and 
unambiguous language for the study of the behavior of 
metabolism integrated into a system: Systems Biology 
(Lazebnik, 2002). 

Mathematical models can vary in complexity and focus, 
nevertheless the model should be judged on the basis of the 
objective that it pursues, because metabolic networks are 
dynamic entities with flows of material produced by the 
biological cellular activity and subject to hierarchical 
regulatory interactions under cellular direction or 
canalization (Jørgensen et al. 2005). Thus, the description 
of metabolic phenotypes should include the composition of 
the metabolites, the measurement of their flows and the 
dynamics of the network. The mathematical and 
computational models most commonly used for the 
clarification of the structure and dynamics of metabolic 
networks are discussed in the next section including an 

analysis of their most important virtues and limitations 
(Figure 7). 

Topological models and the analysis of qualitative 
networks 

The qualitative approach fundamentally uses graph theory 
and describes metabolic networks as bipartide digraphs 
with start nodes (precursor metabolites), end nodes (end 
products) and connections that link both nodes in a 
directional manner (chemical-enzymatic reactions) 
(Alterovitz and Ramoni, 2006). The enzymatic reactions 
are governed by chemical and thermodynamic laws. 

According to Xia et al. (2004) the most important rules of 
metabolic restriction are: 

· Stoichiometry: Refers to the number of molecules that 
participate in the chemical reaction. This property does not 
vary for the same reaction in different organisms and does 
not change with pressure, temperature or other 
physicochemical parameters. Chemical Stoichiometry 
appears as a topological property of metabolic networks. 

· Relative reaction rate: This property is determined by the 
thermodynamics of the reaction and is dependent on the 
physicochemical conditions of the environs. 

· Absolute reaction rate: This property is determined by the 
genetic function and is specific for each enzyme. If changes 
that modify the enzymes occur in the genome, these will 
show up in the chemical reactions. 

The properties mentioned above provide limited 

Figure 7. Comparative representation of the most common mathematical and computational models used for the analysis of 
metabolic networks (adapted from Steuer, 2007; Kahlem and Birney, 2006). 
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Network models in the study of metabolism 

information on the functional state of any metabolic 
network restricted to a temporal or spatial interval and to 
the physicochemical nature of the extra and intra cellular 
environment (Schilling et al. 1999; Fiehn, 2001). Biological 
systems are directed by a cellular organization which 
determines the temporal nature of the interactions. This 
behavior is linked to properties of a superior order peculiar 
to cellular networks -self-organization and self-assemble 
(Autopoiesis)- that permit the components of the system to 
spontaneously create a functional network (Brinkmeier and 
Schank, 2005; Palsson, 2006). This behavior is associated 
with scale free and metabolic networks (Dorogovtsev and 
Méndez, 2002). 

Another quality inherent to biological networks is the bi­
linearity and high interconnectivity between its 
components, thus cellular networks behave as hypergraphs 
(Wagner, 2001). Hypergraphs have topologically non linear 

Metabolites that still 

properties, with a higher growth of functional states than is 
expected from the number of components in the network. In 
other words, the number of phenotypic functions that derive 
from a genome is not linearly correlated with the number of 
genes present in that genome. This fundamental 
characteristic promotes the expression of different possible 
functional states (similar phenotypic behaviors). 
Nevertheless, an organism does not exploit or completely 
use all of its similar functional states. At a particular 
moment in time and space, only a limited subgroup of these 
states will be selected and expressed by the cells (Palsson, 
2006). Thus, metabolic networks are under inviolable 
restrictions (hard restrictions) associated with the 
thermodynamics of the organism (balance of mass and 
energy), their evolutionary history (genetic and regulatory 
restrictions) and restrictions related to the environment, 
allowing a profile of solutions (phenotypic structure ) in a 
given interval of space and time (Förster et al. 2003). 

Figure 8. Reconstruction of a qualitative network model of a generic plant cell (adapted from Gutíerrez et 
al. (2007)) 
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Figure 9. The solution space of metabolic networks. In the three-dimensional unconstrained flux space of a hypothetical network,
 
fluxes can assume any value. 

a) Solutions obtained by restrictions stoichiometry, enzymatic limitations or the balance of mass, then the feasible solution space is 

reduced to a cone; 

b) restrictions by using an objective function, such as maximizing biomass accumulation, can identify a coordinate (set of flux values) on
 
an of the feasible flux cone (red point). (adapted from (Lanzeni et al. 2008). 


Why is it necessary to study the topology of metabolic 
networks? How can structural information help to clarify 
the role of individual nodes and their relationships within 
the network? Which of the functions or solutions of the 
network will be exploited by the cells, given the existence 
of equivalent, multiple states of the network or silent 
phenotypes? How do the responses of the cells change over 
time as a result of selective pressure (Evolutionary history)? 
(Vitkup et al. 2006). 

These questions must be answered in the future with the 
support of these tools. An approach to finding the volume 
and shape of possible phenotypes or solutions for the 
optimization of biological traits under genetic, 
environmental or evolutionary restrictions, is performed by 
the group of Braunstein et al. (2008) where they suggest 
that the best technique that allows this characterization is 
based on the method of Monte Carlo sampling (MCS) of 
the area of metabolic flux of the network under steady state, 
given the complexity of metabolic networks and the 
enormous computational cost involved in these 
calculations. They propose a computational strategy known 
as message-passing algorithm derived from the field of 
Statistical Physics and Information Theory. This algorithm 
based on conjecture or Bethe approximation (Bethe Ansatz) 
allows calculating the volume of a convex polygon of 
incomplete higher-order dimension. Was successfully used 
in the characterization of a metabolic network of 46 
reactions and 34 metabolites in blood and red blood cells in 
predicting the effect on the disruption of some genes of 
central metabolism (gene knock-out) in E. coli (Braunstein 
et al. 2008). Also this approach was used iteratively in the 
human metabolic network to identify missing components. 
There are 356 metabolites that still remain disconnected in 
the published version that serve to highlight the areas where 
more detailed work is required (Patil and Nielsen, 2005). 
On the other hand, the need for a system-wide approach to 
network construction in plants has been recognized and 
used to construct networks in Arabidopsis, which to date 
integrates the regulatory and metabolic networks that 

contains 7,635 nodes (6,176 genes and 1,459 metabolites) 
and 230,900 interactions among these nodes (Figure 8). The 
results of qualitative network analysis of Gutíerrez et al. 
(2007) provide a starting point for future studies, 
identifying the regulatory factors - or network hubs - that 
are likely to be important for the regulation of gene 
networks in Arabidopsis roots in response to Carbon and 
Nitrogen metabolites. Combining existing knowledge into 
qualitative network models and using this as a platform to 
interpret microarray data, which allowed them to identify 
molecular machines. 

In a gene to metabolite study, Rischer et al. (2006) use a 
holistic approach to characterize the terpenoids indol 
alkaloid (TIA) biosynthesis in the Madagascar periwinkle 
Catharantus roseus cultured cells. They combine the use of 
genome wide profiling of transcript using cDNA-amplified 
fragment length polymorphism (cDNA-AFLP) combined 
with metabolic profiling, to characterize the synthesis of 
Ajmalicine, an antihypertensive alkaloid, and Vinblatine 
and Vincristine, antineoplastic bisindole alkaloids, the later 
two are produce in very low amounts in vivo and are not 
synthesized in vitro. The accumulation profiles of 178 
metabolites were combined with the expression profiles of 
the 417 transcripts for an integrated analysis. They create a 
correlation network for the complete set of metabolites and 
genes, which provide insights into the complex regulation 
of TIA metabolism but also of secondary metabolism in 
general. They were able to visualize an unbiased subset 
centered on the Tabersonine node, whose gene-to­
metabolite network around consisted of 11 metabolites and 
13 genes representing the nearest neighbors. This result 
increased the practical potential of metabolic engineering of 
this important medicinal plant. 

In principle, the structure affects the function, a fact which 
can be used to discover or predict new functions or even the 
evolutive origin of the metabolic network (Solé and 
Valverde, 2008). The topology dependent approach has 
contributed to the understanding of general aspects of 

8 



  

 

  
  

 
 

 
 

  
 

  

 

  
 

   
 

  

 

 

 
   

   

 
  

 

  
  

 

  
 

 
 

 
   

 
 

       

   

  
 

  
  

 
  

    

 
   

  

      

  
   

 

  
   

 

  

 
 

  

 
 

 

 

 

 

 

 
  

 
  

 
  

 

Network models in the study of metabolism 

V1 

X1 

V2 

X2 

V3 

X3 

Figure 10. Hypothetical pathway of the transformation of 
the metabolites X1 to X3 by means of the enzymatic 
reactions V2 and V3.For simplicity, the system is open with 
the input represented by V1. 

metabolic networks (scale free, small world effect, 
preferential attachment, modularity, network motifs) (Jin et 
al. 2007). The development of metabolic maps along with 
the progress of implementation of computer platforms to 
simulate cellular functions under the tutelage of tools such 
as graph theory, have been an important first step in 
understanding the contribution of cellular metabolism (Ishii 
et al. 2004). Nonetheless, this perspective has not been able 
to resolve questions inherent to variations in time, is 
ambiguous in its representation for detailed discussions of 
structure and is limited as regards of the interpretation and 
comparative analysis of experimental metabolic data 
associated with other biological networks (For example: 
transcriptomic networks or networks of protein 
interactions) (Gross, 2005), due to the hypergraphic nature 
of metabolism. Then it is important to incorporate 
information relevant to flows within the network or changes 
of the metabolic mass over time, for a complete analysis of 
metabolic systems (Steuer, 2007; Domijan and Kirkilionis, 
2008) due to the static nature of the topological models. We 
continue in this review with the conceptual models that 
incorporate the kinetic parameters of metabolism. 

Stoichiometric analysis 

Although the development of dynamic models that permit a 
complete simulation of the cellular system have been 
attempted, this has proved to be a difficult task due to the 
lack of unambiguous information on the kinetic and 
regulatory properties of metabolic reactions (Tomita et al. 
1999). 

Nevertheless, even in the absence of kinetic data, relevant 
information on the theoretic capacities and operative modes 
of metabolic systems may be obtained using different 
Stoichiometric approaches, such as: Flux Balance Analysis 
(FBA) and Metabolic Flux Analysis (MFA), and others 
applications: Elemental Mode Analysis (EMA) and 
Extreme Pathway Analysis (EPA) (Ciliberto et al. 2007; 

Rios-Estepa and Lange, 2007). The Flux Analysis is based 
on the description of the flow reactions of a metabolic 
network under certain restrictions or boundary conditions 
of biological networks: a) physicochemical and 
thermodynamic restrictions, b) topological restrictions c) 
environmental restrictions and d) regulatory restrictions 
(Kauffman et al. 2003). FBA translates enzymatic reactions 
into flow differential equations such as: 

dxi t( ) 
  = Sv ( , )   [8]
 j x kdt 

where X, describes the concentration vector Xi = (x1, x2, . . . 
, xm), for I = 1,2,3,…, m metabolites, V describes the 
metabolic flow vector: Vj = (v1, v2, . . . , vn) for j = 1,2,3,…, 
n reactions and the Stoichiometric matrix S as the linear 
transformation of the vector V in X. The general dynamic 
mass balance equation for a metabolic network (Equation 
8) is represented by a set or system of differential equations 
(Varma and Palsson, 1994): 

ndxi t( )  = s ⋅v
dt ∑ ij j( , )   [9] x k 

j=1 

Each equation represents the sum of all the individual flows 
vk in which the metabolite is either synthesized or degraded 
xi. There are m metabolites (xi) and n reactions (vi) in the 
network, thus the dimensions (dim) of the vectors X, V and 
of the matrix S are: 

dim(X) = m, dim(V) = n, dim(S) = m x n [10] 

The information on the Stoichiometric of the reactions is 
represented by these equations and by the S matrix (the 
incidence or Stoichiometric matrix). This matrix 
correspond to the inter-phase between the biochemical and 
genetic data (Edwards and Palsson, 2000) and the starting 
point for the mathematical calculations necessary (using in 
silico tools) to elucidate the properties of biological 
networks. In other words, the S matrix relates the 
mathematical properties with the biochemical properties of 
the network (Morgan and Rhodes, 2002). 

Assuming that metabolic networks operate between 
successive quasi-stationary states (the macroscopic 
variables -metabolite concentration and flux- are 
maintained within a tolerance interval defined within a time 
period) where a 0 net flux balance exists, in accordance 
with the law of conservation of mass (Roscher et al. 1998). 

The distributions of the flows that satisfy this condition 
belong to the null space of the S matrix (< ΔS > = 0) 
converting Equation 9 in: 

9 



 

 

     

  
 
 

 
    

 

 

   

  
 

  
 

 
 

 

 
 
 

  
  

 

 
 
 

 

  

 

 

 
 
 

 

   

  
 

 
 

 

 

 

 

 

 
 

 
  

 
 

 
 

   

 
   

   

 
 

 

  
 

  
 

   
 

 

 
 

 
 

 
 

 

Rodríguez, A. and Infante, D. 

n
 
i t( ) 
  = s v⋅ = 0

dx 
∑ ij j [11] x kdt j=1 

( , )  

Due to the fact that the system is indeterminate, since m < 
n, which permits infinite solutions V of the differential 
equations, it is necessary the incorporation of experimental 
information for the imposition of some restrictions, for 
example: nutrient availability (α) and the maximum flux 
allowed for an enzymatic route (β), in this case an object 
function (Vj) is obtained, such as α ≤ Vj ≤ β (Segrè et al. 
2002). Thereafter, with the use of linear programming the 
optimum solutions for the system can be found (Bro et al. 
2006; Nielsen, 2007). This reduction in the space of 
admissible flux provides the basis for FBA (Reed and 
Palsson, 2003) (Figure 9). 

Several metabolic networks have been analyzed in yeast, 
plants and mammalian cell culture using these tools. 
Among them the photosynthetic prokaryote Synechocystis 
sp. PCC 6803 is of special interest to plant biologists as a 
model system (Schwender et al. 2004). FBA has not been 
applied on a plant model yet, but promises to be a useful 
tool for developing embryos, in which optimal biomass 
accumulation and light use-efficiency are also reasonable 
assumptions or constraints (Schwender, 2008). 

MFA is a powerful methodology for the determination 
metabolic pathway fluxes (f). In this approach, the 
intracellular fluxes are calculated using a stoichiometric 
model (metabolic pathway map) for the major intracellular 
reactions and applying mass balances around intracellular 
metabolites. A set of measured extracellular fluxes are used 
as input to the calculations, typically uptake rates of 
substrates and secretion rates of metabolites. The result of 
flux calculation is a metabolic flux map showing a diagram 
of the biochemical reactions included in the calculations 
with an estimate of the rate at which each reaction in the 
diagram occurs at steady state (Libourel and Shachar-Hill, 
2008). 

In a study of the metabolic reconfiguration in response to 
oxidative stress Ralser et al. (2007) showed that there is a 
dynamic rerouting of the metabolic flux to the pentose 
phosphate pathway, with the concomitant generation of the 
reduced electron carrier nicotinamide adenine dinucleotide 
phosphate (NADPH), which is a conserved post 
transcriptional response to oxidative stress. After Grant 
(2008) this study also demonstrates the need to integrate 
genomic, biochemical and in silico modeling approaches to 
fully understand how cells regulate metabolic fluxes during 
oxidative stress conditions. 

In addition to quantification of pathway fluxes, metabolic 
flux analysis can provide additional insights about other 
important cell physiological characteristics. As shown here: 
(1) Identification of branch point control (nodal rigidity) in 
cellular pathways, (2) Identification of alternative 

pathways, (3) Calculation of non measured extracellular 
fluxes and (4) calculation of maximum theoretical yields 
(Stephanopoulos et al. 1998). 

In MFA, kinetic parameters are not required, all that is 
needed are the stoichiometric data and the data for the 
metabolic demand of the network, however, additional 
available information could be incorporated in the future 
(for example thermodynamic restrictions) (Liebermeister 
and Klipp, 2006). 

One of the main disadvantages of this method is that it 
assumes the metabolic network is in steady-state. 
Computationally, steady-state models are easiest to manage 
and steady-state systems have been used productively in 
plant studies over the last dozen years to yield extensive 
and detailed flux maps of central metabolism (Saito, 2009). 
An alternative to estimate flows and develop predictive 
models in non-plants systems is the use of the dynamic 
labeling methods. Dynamic labeling traces the change in 
the level of a metabolite in a metabolic pathway after the 
application of a stable isotope-labeled compound. The time-
dependent decrease in the labeling level of the precursor as 
well as the increase in that of a down-stream metabolite in 
the pathway is monitored as a dynamic process. The value 
of metabolic flux is determined by fitting the model 
describing the labeling dynamics of the pathway to the 
observed labeling data (Matsuda et al. 2007). 

In addition, a number of studies have used batch cultures in 
which plant cell suspensions are grown for several days on 
a medium that contains 13C- or 14C-labelled glucose as 
carbon source. Baxter and colleges establish a method for 
deriving non steady- state fluxes based on the mass-balance 
of identifiable forms of molecules. Following the 
introduction of a 13C-labelled precursor, a time-series of 
samples are analyzed by gas chromatography-mass 
spectrometry to give information both on change in 
metabolite pool size and the percentage labelling of a series 
of mass isotopomers of each metabolite (Baxter et al. 
2007). Using threonine biosynthesis as a model, they 
demonstrated that for a reaction in which the carbon 
skeleton is conserved, it is possible to over-determine 
fluxes using mass balance of mass isotopomers and there 
was no requirement for metabolic or isotopic steady state. 
They also demonstrate how linear regression methods can 
be used to estimate non-steady state fluxes from mass 
balance equations. 

Kinetic or deterministic analysis (quantitative 
models) 

In the same way as for Graph analysis, the Stoichiometric 
approach does not permit the direct description of the 
dynamic properties of the systems. Specifically, does not 
permit conclusions about the dynamic behavior for a future 
metabolic state, for example, if we wish to use the flow 
distribution function V(Xo), with (Xo) representing variable 
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metabolic concentrations over a period of time (Yang et al. 
2005). 

For this purpose, kinetic models that permit the satisfactory 
description of the dynamics of metabolic networks have 
been developed. The metabolic control analysis (MCA) 
allows the clustering of metabolic pathways as a set of 
ordinary differential equations assuming spatial 
homogeneity (Cronwright et al. 2002). To better understand 
this mathematical model we shall use the following 
example, suppose a small metabolic route, which for 
simplicity is assumed that contains no elements or 
regulatory structures and assume the transformation of the 
species Xi for I = 1,2,3…m metabolites associated with the 
Vj for j = 1,2,3…n chemical-enzymatic reactions that in 
order to manage the system of equations that arise from the 
model does not take into account the metabolic precursors 
needed in any system as illustrated in Figure 10; where m = 
3 and n = 3 (so the system is determinate). The system is 
completely described by the set of i-th linear differential 
equations, shown below in both their canonical and matrix 
form in equation 12, where X(t) represents the i-th time 
dependent metabolic concentration vector and S denotes the 
stoichiometric matrix (incidence matrix) with ij elements. 

m
i ( t )dx 

= ∑sij ⋅v j ∀ i = 1,2,3...n; j = 1,2,3...m
( x ,k )dt j=1 

[12] 
x⎡ 1( t ) ⎤ ⎡1 −1 0 ⎤ ⎡v1( X ,k ) ⎤
 

d ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
X = 0 1 −1 ⋅ V2( t ) 2( X ,k )⎢ ⎥ ⎢ ⎥ ⎢ ⎥dt ⎢X ⎥ ⎢0 0 1 ⎥ ⎢V ⎥⎣ 3( t ) ⎦ ⎣ ⎦ ⎣ 3( X ,k ) ⎦ 

The j-th kinetic enzymatic vector Vj (x,k) describes a non 
linear function dependent on the concentration of the 
metabolite X and kinetic parameters K inherent to the 
enzyme, such as the Michaelis-Menten constant (Km), the 
maximum catalytic velocity (Vmax) and the equilibrium 
constant of the reaction (keq). Once the K parameters, the 
initial conditions X(o) and the functional form of the 
differential equations have been obtained, the system can 
be numerically resolved and the behavior of the metabolic 
pathway and its metabolites completely described over time 
(Fell, 1992). 

Several dynamic properties, such as the dynamic response 
to perturbations, the stability of a metabolic state and the 
transition of an oscillating behavior can be obtained using a 
local linear approximation of the system. This local 
approximation is obtained by means of the expansion of a 
Taylor Series of the metabolic system in a stationary state 
(not necessarily unique or stable). The linear term for the 
expansion is the Jacobian Matrix J of the first order partial 
derivatives of the system of kinetic equations for X(t) 
(equation 13). This matrix represents the dynamic response 
of the system in the neighborhood of a stationary state. 

⎡∂f(1) ∂f(1) ∂f(1) ⎤ 
⎢ ⎥∂x ∂x ∂x⎢ 1 2 3 ⎥
 
⎢∂f(2) ∂f(2) ∂f(2) ⎥
J = [13] ⎢ ⎥∂x1 ∂x2 ∂x3⎢ ⎥∂f ∂f ∂f⎢ (3) (3) (3) ⎥ 
⎢ ∂x ∂x ∂x ⎥⎣ 1 2 3 ⎦ 

In contrast to the mass balance equation (equation 11), 
which does not provide information on the stability of the 
metabolic state when disrupted, the real part of the 
eigenvalue (characteristic root) of the Jacobian describes 
the possible scenarios of stability and their transitions from 
the metabolic state, for example: Hopf type bifurcations 
(Steuer, 2007). If we take the metabolic pathway of Figure 
10 and define {Ki / i=1,2,3…n} as the chemical equilibrium 
constant of each reaction, the metabolic flows will be 
established by mass action kinetics in their simplest form 
and the system of explicit kinetic equations will be: 

dx1 = −k X = f2 1 (1)dt 

dx 2 = k2 X1 − k3 X 2 = f(2 ) [14] 
dt 

dx 3
 = k3 x 2 = f(3)
dt
 

The Jacobian matrix of equation 13 becomes: 

⎡−k2 0 0⎤
 
⎢ ⎥
J = k −k 0⎢ 2 3 ⎥  [15] 
⎢ 0 k 0⎥⎣ 3 ⎦

Now that we know the elements of J, we can describe the 
stability of the system. In general terms, the negative real 
part of the eigenvalue of the Jacobian J indicates a stable 
solution for the system, which converges to a stationary 
state. On the other side, the positive real part of the 
eigenvalue of J describes an unstable solution and the 
system does not converge to a stationary state. In Figure 11 
it is shown the different dynamic behaviors of the system 
depending on the eigenvalues of the Jacobian matrix 
evaluated around a stationary state Xº. 

Let us consider the 3 x 3 J matrix of equation 15. The cubic 
eigenvalue equation λ becomes 
− λ3 − (k2 + k3 )λ

2 + k2 ⋅ k3λ  and the eigenvalues:  
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− ( k2 + k3 ) + ( k2 + k3 )
2 + 4 ⋅ k2 k3λ1 = ;

2 

λ2 =
− ( k2 + k3 ) − ( k + k )2 + 4 ⋅ k k2 3 2 3 

2 

If we assume integer numbers for k1 and k2 > 0, our system 
will not converge to a stationary state. As can be observed, 
a limitation of this approach is the necessity to determine 
the values of the kinetic parameters k. 

A defining characteristic of living cells is the ability to 
respond dynamically to external stimuli while maintaining 
homeostasis under resting conditions. Capturing both of 
these features in a single kinetic model is difficult because 
the model must be able to reproduce both behaviors using 
the same set of molecular components. A novel approach 
differs critically from metabolic flux analysis and previous 
genome-scale metabolic network reconstructions because it 
accommodates nonlinear terms that describe the dynamic 
behavior of each reaction in the system. Previous large 
scale network reconstructions typically use a stoichiometric 
matrix to represent the gross flux of metabolites in the 
system. Purvis et al. (2009) using a modified kinetic 
modeling (models are built in a stepwise fashion, beginning 
with small ‘‘resting’’ networks that are combined to form 
larger models with complex time-dependent behaviors), not 
only reduce the computational cost of fitting experimental 
time-series data but can also provide insight into limitations 
on system concentrations and architecture. They have 
preserved the mathematical form of each kinetic rate 
equations as reported in the literature, allowing models to 
be built from existing data in a ‘‘bottom-up’’ fashion while 
still allowing calibration to whole-system experimental 

data. This feature will substantially improve the accuracy of 
dynamical system simulation and parameter estimation. 
This method was illustrate showing how 77 reactions from 
17 primary data sources were integrated to construct an 
accurate model of intracellular calcium and 
phosphoinositide metabolism in the resting and activated 
human platelet. 

Although the explicit kinetic models quantitatively describe 
the dynamics and complex properties of metabolic systems 
(oscillations, multi-stability or irreversible commutations), 
their computational construction becomes complicated 
when the components of the network are numerous and the 
kinetic parameters incomplete (Cronwright et al. 2002).  

Structural Kinetic Models (SKM): A semi-
quantitative approach 

The modified kinetic model proposed by Steuer et al. 
(2006) is an intermediate between the stoichiometric and 
deterministic models; it describes the stability and 
robustness of the possible metabolic states of a network 
using the minimum relevant kinetic information and it 
identifies the important interactions and the parameters that 
rule the dynamic properties of metabolic systems, without 
the knowledge of the explicit functional forms of the 
differential equations of the enzymatic kinetic rate. 

For most natural phenomena is unnecessary an explicit 
kinetic model and the J matrix, expressed in terms of the 
derived partial equations (equation 13), generally requires 
the explicit kinetic knowledge of the enzymatic reactions 
(values of the kinetic parameters k). Nevertheless, it is still 
possible to specify the structure of the Jacobian matrix, 
even without this information, if each element in the matrix 
is restricted to a definite time interval (Strogatz, 1994; 

Figure 11. Classification of local dynamics in the neighborhood of a stationary state according to the eigenvalues of the 
Jacobian after a perturbation. 
a) Stable node, the real part of the eigenvalues are negative and the system returns to its original state;  

b) Stable focus, the stationary state oscillates back to its original state;  

c) Saddle, the metabolic state is unstable and the perturbation is amplified exponentially;  

d) Unstable focus, the stationary state is unstable with an oscillating divergence (adapted from Steuer (2007)). 
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Network models in the study of metabolism 

Scott, 2007). Just as the stoichiometric balance imposes 
restrictions and defines a space of flux solution, the 
Jacobian matrix imposes a set of possible dynamic 
behaviors for the metabolic network and defines the 
dynamic capabilities of any metabolic state. 

The structural kinetic models (SKM) are based on the 
development of a parametric representation of the Jacobian 
matrix, in a way that each element in the matrix is defined 
within a time interval without the need of further kinetic 
information of the metabolic system under study. 

The parametric Jacobian matrix (Jx) is defined as the 
matricial product, Jx = Λ •θ X 

μ where the matrix Λ 
reflects the metabolic and stoichiometric state characterized 
by Xo and Vo in a stationary state (not necessarily unique or 
stable). The matrix θ X 

μ is made of elements that denote the 
effective kinetic order o normalized saturation of each 
reaction with respect to the substrates, products and even 
possible modulating effectors (for example: allosteric 
effectors). Both matrices participate in the parameter space 
associated with the metabolic system of interest. Each 
stationary metabolic state is specified by Vo and Xo and 
those elements in θ X 

μ different from zero are defined as an 
interval of dynamic moment, with the kinetic parameters 
not necessarily known. 

The SKM model proposes the rewriting of the system of 
differential equations described in equation 12 to: 

omd Xi t( )  Vj V ( , )j  x k  
o 

= ∑ o 
Sij ⋅ o

∀ i =1,2,3... n  [16] dt X X Vi j=1 i j 

where Xi 
o indicates the concentrations of the i-thmetabolite 

and Vj 
o = V(Xo,k) represents the distribution of the j-th flux, 

both parameters being associated with a stationary state 
(not necessarily unique or stable). 

By definition the matrices Λ and μ are written as: 

V o	 Vjj( X k, )	 X kΛ =  ⋅S μ : = ( , )  

; X jij o ij ( ) 	  [17] X	 V °i t( ) 	  j 
° ( X k, ) 

The Jacobian is re-written with respect to the y variable, by 
:)ti(X°/)ti(X=׃iymeans of the transformation 

∂μ(y) 
Jx y=μθconμθ Λ٠ ׃= [18] y ∂y 

y°=1 

]2X,1X= [׃i°Xis then defined by the metabolic concentration 
.3°V° =2V° =1V=׃i°Vand metabolic flow by 

The stationary metabolic state in our example in Figure 10 

With SKM, the system of kinetic equations is replaced by a 
parametric representation of the metabolic pathway in 
terms of the Jacobian matrix, becoming in our example: 

⎡	 0 0 ⎤v v
− 0⎢	 0 0 ⎥
 

1 1 2
⎢ x x ⎥ ⎡ 0 θ 0⎤ 
⎢ v0 v0 ⎥ ⎢ 

x1 ⎥ 
Λ = ⎢ 0 − 0 ⎥ ;θ μ = ⎢θx 

2 0 0⎥  [19] 0 y 1
⎢ x2 x2 ⎥ ⎢ 3 ⎥0 θ 0⎢ 0 ⎥ ⎣ x2 ⎦v⎢ 0 0 0 

⎥ 
⎢ x ⎥⎣ 3 ⎦

The elements of the matrix Λ represent: a) the structure of 
the system as defined by the vector V° and the temporal 
scale as defined by the vector X°, b) the elements of the 
matrix θy 

μ represent the normalized degree of saturation of 

each reaction with respect to its substrate, where θy 
μ ∈ [0,1] 

for all substrates and θy 
μ ∈ [0,-1] for all of the metabolic 

products (Bapat, 2000). The saturation or effective kinetic 
order, even with unknown values is defined for an interval: 
θ y 

μ ∈ [0,1] of the reaction V2 with respect to the substrate 

X1 and θ y 
μ ∈ [0,-1] of the reaction V3 with respect to the 

substrate X2. Assuming similar conditions for V2 and V3 
as in the explicit kinetic equations and θμy = 1, the 
Jacobian matrix is specified by the metabolic state [V°; 
X°1; X°2] is: 

[20]
 

The Jacobian is evaluated in terms of the four generalized 
parameters with the purpose of studying the dynamic 
behavior of a system after a disturbance around a stationary 
state X°, V° (Steuer et al. 2006; Steuer et al. 2007). 

Because lacking or incomplete enzyme-kinetic information 
that is necessary for classic kinetic models, this proposed 
method create bridges between topology based approaches 
and explicit kinetic models of metabolic networks. The 
SKM models permit to make quantitative conclusions about 
the dynamics of the system based on a minimum of 
information (qualitative) compared to the explicit kinetic 
models (quantitative). 
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Figure 12. Process of metabolic model reconstruction. (Adapted from Borodina and Nielsen, 2005) 

This approach was used by Grimbs et al. (2007), to 
represent the metabolic network of the human erythrocyte. 
In particular, transitions to instability, occurring via a loss 
of a stable steady state, were previously argued to play a 
crucial role in senescence and metabolic collapse of 
erythrocytes and may act as a primary signal for cell 
removal in patients with hemolytic anemia. While usually 
an investigation of such transitions necessitates the 
construction of explicit kinetic models, this approach 
allows the draw of quantitative conclusions about the 
stability of metabolic states in response to an increased 
ATP demand, occurring under conditions of osmotic or 
mechanic stress. The authors demonstrated that different 
metabolic states, each satisfying the flux balance equation 
and thermodynamic constraints, can nonetheless show 
drastic differences in the ability to ensure stability and 
maintain metabolic homeostasis. 

DISCUSSION AND CONCLUDING REMARKS 

There is a growing interest in analyzing the topological 
organization of metabolic networks in order to make 
inferences about their dynamic and functional properties. 
Although we must emphasize those mathematical models 
by themselves do not allow conclusions to be drawn about 
the dynamic behavior of biological systems. The translation 
of metabolic network graphs into mathematical expressions 
does permit the formal specification of the dynamic 
capabilities of the system and the identification of targets 
for biotechnological modifications (Steuer, 2007). 

Functional behavior emerges from the nonlinear 
interactions between genes, proteins and metabolites within 
metabolic and regulatory networks. It has also been argued 
that the kinetic study of the network of enzymatic reactions 
(fluxomics) is key for the study of the dynamics of 
metabolic networks. The quantification of metabolic flows 
using isotopomers- 13Cbased metabolic flux analysis- 
(Rousu et al. 2003; Sauer, 2006), the probabilistic graphical 
models (bayesian, continuous differential kinetic, 
Markovian, master-slave synchronization) (Weitzke and 
Ortoleva, 2003; Wodak et al. 2004; Ao, 2005; Pécou, 2005) 
and random Boolean network models (Kauffman, 1969) 
have tried to resolve this dilemma, although some 
contradictions do exist as the minimum amount of 
information required and the relevance of the modularity of 
the network (Stumpf and Wiuf, 2005; Ingram et al. 2006; 
Solé and Valverde, 2006; Hormozdiari et al. 2007). 

In this review several analytical approaches have been 
examined, the first model, although qualitative, 
characterizes the topological properties of metabolic 
networks without making any inferences about their 
dynamic behavior. The second approach explicitly 
describes the dynamics of the system once the kinetic 
parameters of each component are known, although this 
may be a disadvantage in cases where the systems are 
incomplete or large, due to the high computational costs of 
the calculations. Lastly, semi-quantitative models that 
permit inferences about the stability and dynamics of the 
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Network models in the study of metabolism 

system without the need for an exhaustive knowledge of 
every constituent element were described, although 
chemical or functional restrictions may be required in order 
to obtain reasonable solutions. Although these approaches 
have been successful, they are limited in regard the 
application of regulatory parameters (feedback loops). In 
short, these models require iterative processes for the 
incorporation of new information and the validation of this 
information using experimental data, thus permitting the 
evolution and improvement of these mathematical tools 
(Figure 12). 

Although the approaches described here have both 
advantages and limitations for the study of the functionality 
and evolution of biological systems, all of the models 
reviewed agree that robustness is a common property of 
biological networks. The robustness of biological systems 
lies in the persistence of their functionality in the face of 
perturbations such as the removal of network links or 
nodes. In other words, robustness represents the capacity of 
the systems to maintain their stability in spite of changes to 
either their internal or external environment. 

A mathematical definition of robustness (R) of a system (s) 
measured as a function of the property (a) could be, 
according to Kitano (2007): 

s sR Ψ(p)D (p)dp a,p = ∫ a
 

p
 

Where the function ( )  represents the probability of the Ψ p 
perturbation of space p and Ds (p) an evaluation function a

of (p) that determines the extension and degree of the 
perturbation, defined as: 

2002). Thus, mathematical models and simulations can be 
used as a guide to the design and improvement of 
biotechnological production systems (Sweetlove and 
Fernie, 2005). 

Finally, different approaches have been established in how 
the network is controlled, in this review we assume the 
metabolic fluxes, which means that each pathway has a rate 
limited step controlling the flux by only enzymes i.e. if a 
step is rate limiting it is expected that overexpression of the 
corresponding enzyme will give an increase in the flux 
proportional to the increase in expression. In a recent 
review Morandini (2009) propose a different view, in 
which post-translational modification of enzymes and feed­
back inhibition control the homeostasis of metabolism 
rather that the flux control and then he proposes more 
extensive use of control elements, like transcription factor 
and metabolic shorcuts for plant biotechnology. We do not 
see any contradiction in both models, because to 
manipulate the flux control it is necessary to work with the 
cell circuitry elements, the problem to be solved is where in 
the network modification need to be applied, as it is stated 
in the work of Rischer et al. (2006) in C. roseus. 
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Both metabolic flow and kinetic analyses permit the 
quantitative evaluation of the redistribution of the flows 
when enzymatic reactions are perturbed and to clarify the 
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