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An electronic nose (E-nose) coupled to gas 
chromatography was tested to monitor alcoholic 
fermentation by Saccharomyces cerevisiae ICV-K1 and 
Saccharomyces cerevisiae T306, two strains well-known 
for their use in oenology. The biomass and ethanol 
concentrations and conductance changes were 
measured during cultivations and allowed to observe 
the standard growth phases for both yeast strains. The 
two strains were characterized by a very similar 
tendency in biomass or ethanol production during the 
fermentation. E-nose was able to establish a kinetic of 
the production of aroma compounds production and 
which was then easy to associate with the fermentation 
phases. Principal Component Analysis (PCA) showed 
that the data collected by E-nose during the 
fermentation mainly contained cultivation course 
information.  Discriminant factorial analysis (DFA)  was  
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able to clearly identify differences between the two 
strains using the four main principal components of 
PCA as input data. Nevertheless, the electronic nose 
responses being mainly influenced by cultivation course, 
a specific data treatment limiting the time influence on 
data was carried out and permitted to achieve an 
overall performance of 83.5%.  

Electronic noses (E-noses) are tested and applied since 
eighty’s as aromatic quality sensors in the agricultural, 
environmental, medical, biotechnological and food domains 
(Bourgeois et al. 2001; Ampuero and Bosset, 2003; Thaler 
and Hanson, 2005; Rudnitskaya and Legin, 2008; Peris and 
Escuder-Gilabert, 2009). They are typically composed of an 
array of non-specific chemical gas sensors characterized by 
a broad and partly overlapping selectivity to volatile 
compounds. This concept was inspired by the human nose  
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and clearly shows similarity with the human brain-olfactory 
system (Gardner and Barlett, 1994). Nevertheless, E-nose 
has large differences both in sensibility and selectivity 
compared to the human nose. In fact, researchers tend to 
consider this technology as an efficient alternative to 
sensory analysis. Besides, the conventional flavour analysis 
methods such as mass spectroscopy combined with gas 
chromatography or high pressure liquid chromatography 
provide information on aroma analysis and recognition, but 
are rather time-consuming and expensive. E-nose is on the 
contrary a fast, reliable, cost-effective, in line, automatic 
and operator-friendly system of aroma analysis (Peris and 
Escuder-Gilabert, 2009; Yu et al. 2009b). Nevertheless, the 
E-nose’s gas sensors provide a large and complex amount 
of data (i.e. sensor responses), which has to be processed by 
pattern recognition techniques such as principal component 
analysis (PCA), linear discriminant analysis (LDA) or 
neural network (NN) (Hernández Gómez et al. 2006; Scott 
et al. 2006; Ragazzo-Sanchez et al. 2008; Zhang et al. 
2008). Recently, several studies proposed to improve 
discrimination between very similar E-nose data by first of 
all analyzing E-nose data by PCA, in order to reduce the 
data dimension, and secondly, selecting some of the more 
most relevant principal component values as input in 
classification techniques such as LDA or NN (Yu et al. 
2009a; Yu et al. 2009b). Data processing improves the 
selectivity of the systems leading to an extensive range of 
applications. 

Samples classification (Shaw et al. 2000; Ragazzo-Sanchez 
et al. 2008; Tudu et al. 2009), adulterations or detection of 
defaults in aroma (Aparicio et al. 2000; Hai and Wang, 
2006; Yu et al. 2007), quality measurement (Sarig, 2000; 
Yu et al. 2009a) and process monitoring (Bhattacharyya et 
al. 2007; Gutiérrez-Mendez et al. 2008) are the main 
applications of the E-nose technology. Recent applications 
of E-nose concerned the biotechnological domain. E-nose 
was implemented to study its ability for diagnosis, 
detection and screening of various stages of renal disease 
(Haick et al. 2009) or for monitoring industrial processes 
related to microorganisms (Bachinger et al. 2001; Clemente 
et al. 2008) or cells cultures (Bachinger et al. 2000; 
Bachinger et al. 2002; Kreij et al. 2005). In the latter areas, 
the initial studies consisted in analyzing the headspace 
generated by various microorganisms grown on Petri dishes 
by the E-nose and detecting and identifying 
microorganisms from the responses of the E-nose treated by 
chemometrics (Dutta et al. 2002; Moens et al. 2006). For 
instance, Dutta et al. (2002) showed that gas sensors 
efficiently identified six species of bacteria responsible for 
eye infections and ten clinically important microorganisms 
were successfully tested and identified by Moens et al. 
(2006). Different studies were carried out during 
microorganisms cultivations and not after a definite 
incubation time. Gardner et al. (1998) successfully 
predicted the class and growth phase of two potentially 
pathogenic bacteria by analyzing samples of the cultivation 
headspace with six Metal Oxide Semiconducting (MOS) 
gas sensors. Classification was performed with a multi-

layer perceptron network applied on the responses of the E-
nose pre-treated by different pre-processing and 
normalization methods. A cultivation of Saccharomyces 
cerevisiae on glucose was monitored on-line (ethanol 
concentration and course cultivation) analyzing the 
cultivation gas effluent with the E- nose (Liden et al. 2000). 
The potential of the E-nose technology was confirmed as 
well on a production-scale CHO-cell process (Bachinger et 
al. 2000), on the detection of the metabolic burden on a 
recombinant E. coli strain (Bachinger et al. 2001) or 
bacterial infections in cell cultures (Bachinger et al. 2002; 
Kreij et al. 2005). Brandgård et al. (2001) successfully 
monitored growth of Methanobacterium formicicum using a 
MOS and MOSFET (Metal Oxide Semiconducting Field 
Effect Transistor) E-nose in order to detect disturbances in 
the microbiological process. The gas sensor array 
technology was applied on complex fermentation medium 
such as milk (Magan et al. 2001), to investigate yogurt 
(Cimander et al. 2002; Navratil et al. 2004), wine (Pinheiro 
et al. 2002) or black tea (Bhattacharyya et al. 2007) 
fermentations. In the case of wine, Pinheiro et al. (2002) 
analyzed wine-must fermentation with an E-nose insisting 
on sample pre-treatment (organophilic pervaporation) to 
really detect changes in aroma compound and not only in 
ethanol concentration during fermentation. In fact, in the 
case of alcoholic fermentations or alcoholic beverages 
analysis, the high ethanol concentration tends to affect the 
detection of aroma compounds by the E-nose technology 
(Ragazzo-Sanchez et al. 2004; Lozano et al. 2007; 
Ragazzo-Sanchez et al. 2008; Peris and Escuder-Gilabert, 
2009). However, various de-alcoholisation techniques have 
been developed, such as purge and trap, dynamic 
headspace, distillation, adsorption methods (SPME), 
membrane systems, liquid-liquid extraction and mass-
spectroscopy (MS)-based E-nose (Peris and Escuder-
Gilabert, 2009). Marti et al. (2004) used an E-nose system 
associated to a headspace sampler coupled to a mass 
spectrometer to successfully discriminate wines according 
to different oenological parameters. In this system, ethanol 
interferences were avoided due to selection of the proper 

Table 1. Name and arrangement of sensors in the three 
temperature-controlled chambers of the E-nose. 

 

Chamber 1 Chamber 2 Chamber 3 

T30/1 P30/1 SY/LG 

P10/1 P40/2 SY/G 

P10/2 P30/2 SY/AA 

P40/1 T40/2 SY/Gh 

T70/2 T40/1 SY/gCTI 

PA2 TA2 SY/gCT 



Identification of Saccharomyces cerevisiae strains for alcoholic fermentation by DFA  on electronic nose signals 

 3

fragment-ion range for the MS. Another solution was 
proposed by Ragazzo-Sanchez et al. (2004) who developed 
a back-flush gas chromatography to pre-treat vapour 
samples and totally and rapidly remove alcohol from 
samples before the analysis with the E-nose. In this case, 
the E-nose system associated to PCA allowed to 
discriminate four alcoholic beverages (red wine, tequila, 
vodka and whisky) and detect four compounds responsible 
for off-flavour in red wine (Ragazzo-Sanchez et al. 2005; 
Ragazzo-Sanchez et al. 2008; Ragazzo-Sanchez et al. 
2009). 

The aim of this study was to investigate on-line alcoholic 
fermentations with an E-nose equipped with a back-flush 
gas chromatography removing alcohol from samples before 
analyzing. A second objective was to discriminate two 
different oenological Saccharomyces cerevisiae strains 
using the E-nose responses whatever the cultivation time 
was.  

MATERIALS AND METHODS 

Microbial strains and medium 

Two oenological Saccharomyces cerevisiae strains (ICV-
K1 and T306), supplied by l’Institut Coopératif du Vin 
(ICV-Montpellier), were obtained as active dry yeasts and 
used for culture experiments. A synthetic medium 
previously described by Bely et al. (1990) was used for 
fermentations. The strains were inoculated in bioreactor in 
a proportion of 50 mg dry matter/L. One gram of dry yeast 
was rehydrated in a sterile flask in 10 mL of stirred distilled 
water at 32ºC for 15 min. Then, 0.75 mL of this pre-
inoculum was added to 200 mL of the synthetic medium to 
carry out the final inoculum. 

Fermentation process 

A 2 L bioreactor (Inceltech, Toulouse, France), with a 1.5 L 
working volume and equipped with standard measurement 
and control units for temperature, pH and stirrer speed, was 
used to carried out batch alcoholic fermentations. 
Cultivation stirring and temperature were maintained 
constant at 200 rpm and 28ºC, respectively. Three different 
fermentations were carried out for each yeast strain.  

Offline analysis 

Biomass. The yeast concentration was determined by 
filtering 10 mL of broth through a 0.2 µm cellulose nitrate 
filter (Sartorius, Germany), previously dried and weighed. 
The filter was then washed twice with distilled water and 
dried at 102ºC for 24 hrs. The dry cell mass (g of dry cell 
weight per L) was calculated by weight difference. A 
fermentation sample was removed from the bioreactor 
every 10 hrs. All samples were measured by triplicate. 

Glucose. Glucose was analyzed using a high performance 
liquid chromatograph (HPLC) (Shimatzu, Japan) on a 
Aminex HPX87H column (Bio-Rad, CA, USA) at 65ºC. 
The mobile phase was a 6 mM H2SO4 solution. Detection 
was performed with a differential refractive index detector 
(2410, Waters, Milford, MA, USA). 

Online analysis 

Electronic nose. A commercially available E-nose (FOX 
4000, AlphaMOS, France) with eighteen different metal 
oxide semiconductor gas sensors (MOS) was used. The 
different sensors were disposed in three temperature-
controlled chambers, each chamber including six sensors, a 
thermometer and a humidity sensor. The sensor 
arrangement in each chamber is depicted on Table 1. A 
generator of purified air (Whatman, UK) with a CaCl2 post 
dehydration column was used to provide clean dry air to the 
nose system.  

The bioreactor headspace was continuously pumped thanks 
to a membrane compressor (Fisher Bioblock Scientific, 
France) placed before the sampling loop. Due to the small 
bioreactor volume, the gas sample was reintroduced in the 
bioreactor in order to avoid depression and volatile 
compounds losses. Sampling from this gas flow was 
performed every 30 min through a 6-port automated 
sampling valve and the sample was introduced in a gas 
chromatograph (IGC 121C, Intersmat, Belgium) equipped 
with a Porapak Q column (1 m x 0.32 cm). The samples 
were then dehydrated and de-alcoholised by a patented 
back-flush technique (Ragazzo-Sanchez et al. 2004). In this 
technique three multiway electro-valves were used for 
automatic injection in the GC, column back-flush and 
automatic injection in the E-nose. 

Table 2. The confusion matrix showing the strain classification by DFA using the front four principal components obtained
from the PCA of the corrected data. The accuracy of the classification is defined as (210 + 222) / (290 + 299), namely 73.2%. 

 
 True Class  

 Predicted class  ICV-K1 (287)  T306 (303)  % correct 

 ICV-K1  210  80  72.4 

 T306  77  222  74.2 
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Ethanol. Ethanol was analyzed on-line thanks to the 
dehydration-desalcoholisation system by gas 
chromatography (IGC 121C, Intersmat, Belgium) with a 
flame ionization detector. The analytical column was a 1 m 
Porapak Q column operated at 180ºC. Nitrogen served as 
carrier gas at a flow rate of 18 mL/min. The ethanol 
calibration was carried out using standard ethanol solutions 
placed in the bioreactor and analyzed in the gas 
chromatography- E-nose system in the operating culture 
conditions. This calibration was carried out before each 
fermentation batch. 

Biomass. The determination of cell mass concentration 
was performed by an optical sensor (653/BT65 model, 
Wedgewood Technology Inc, CA, USA) measuring 
medium turbidity. Previously, a calibration curve was 
carried out in order to transform optic density into biomass 
concentration (g dry matter/L). 

Conductance. At the same time, the conductance 
determination was ensured by a dual-frequency impedance 
monitoring device. The system was obtained from Fogale 
Nanotech (Nîmes, France).  

Data analysis 

The software provided with the E-nose system was used to 
acquire and store the gas sensor array signals. From each 
sensor signal, the fractional difference was calculated as 
shown in Equation 1:  

           [Equation 1] 

where Sfd corresponds to the modified signal, Smax to the 
maximum sensor signal value, and Sbaseline to the base line 
sensor signal value.  

Each sensor signal was auto-scaled (i.e. mean-centered and 
divided by its standard deviation for rescaling with unit 
variance) to obtain SfdN. The maximum value of SfdN for 
each sensor was used for PCA or DFA to avoid domination 
of high sensor responses in data processing. Relevant 
information contained in low sensor responses were thus 
taken into account in multivariate analysis processing. PCA 
and DFA were carried out with the chemometrics toolboxes 
of the software Matlab 6.5 software (the MathWorks Inc, 
MA, USA). 

RESULTS AND DISCUSSION 

Batch cultivations 

Saccharomyces cerevisiae ICV-K1 and Saccharomyces 
cerevisiae T306 are quite similar in their oenological 
fermentation characteristics according to the producer 
(Lallemand, France). They both produce low volatile 
acidity and sulfate concentration, they are resistant to high 

alcohol content up to 14% and 18% for T306 and ICV-K1, 
respectively. Nevertheless, they are used for different 
applications: ICV-K1 strain is recommended as a starter 
yeast strain for red or white wines while T306 is 
particularly intended to white aromatic wines. Besides, the 
ICV-K1 strain has a neutral sensory effect whereas the 
T306 is inclined to enhance varietal character of grapes. 
The fermentation performances of the ICV-K1 strain are 
reported in Figure 1, which shows the biomass, glucose and 
conductance changes in function of cultivation course. 
Similar changes were observed for the two other 
fermentations using the ICV-K1 strain and the three ones 
with the T306 strain. Based on the biomass concentration 
changes, the standard growth phases were observed. In 
particular, three stages are distinguished: a lag phase 
(Figure 1, phase I), then a swift growth phase (Figure 1, 
phase II) and a long and progressive deceleration phase 
(Figure 1, phase III). During the phase II, the broth 
conductance decreased due to the ammonium nitrogen and 
mineral ions consumption. During the third phase, an 
increase in the conductance clearly appeared due to the 
release of ions and secondary metabolism compounds (such 
as aroma compounds) by yeasts. The two strains did not 
clearly have a distinct behaviour in terms of biomass or 
ethanol concentration during the cultivation as shown in 
Figure 2.  

For all of the fermentation runs and, whatever the strain 
was, the ethanol concentration had a similar evolution 
(Figure 2). The same observation was carried out for 
biomass concentration changes (data no shown). 
Particularly, neither of these two strains appeared to 
produce more ethanol or biomass at the end of cultivation. 
It clearly appeared that the conventional changes of 
biomass or ethanol during the fermentation did not enable 
to discriminate the two strains.  

Analysis of the electronic nose sensor responses 

The ethanol concentration was high (from 0 g.L-1 to 90 g.L-

1) at the end of these oenological fermentations as shown in 
Figure 2. This phenomenon induced the use of a 
dehydration and de-alcoholisation system to avoid 
saturating sensors and masking the minor volatile 
compounds. The back-flush system proposed by Ragazzo et 
al. (2004) enabled to remove the interference due to ethanol 
without eliminate aroma compounds of interest. This 
system has the advantage of, first of all, separating the 
different compounds in the GC column, and then, by 
reverting to the gas vector inside the column after water and 
ethanol elution, only collecting and introducing the other 
volatile compounds in the E-nose system. Figure 3 presents 
the typical time profiles of selected sensor signals from the 
E-nose for the ICV-K1 strain. Only two successive phases 
appeared in these sensor profiles in comparison with the 
three phases observed during the yeast cultivation. The 
sensor responses remained constant until 22 hrs of 
cultivation. This was associated with the lag phase and the 
fast growth phase: these two cultivation steps were 
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characterized by a very low release of aroma compounds. 
The sensor responses then clearly increased as soon as the 
long deceleration phase began it is associated with a large 
aroma compounds production.  

Principal component analysis 

The aim of Principal Component Analysis (PCA) is to 
transform the numerous original variables (sensor signals) 
into new variables, Principal Components (PCs), which are 
linear combinations of the original ones. In fact, the 
inherent structure of data set is preserved while its resulting 
variance is maximized. In a first step, the E-nose responses 
for each strain were analyzed separately by PCA. Figure 4 
shows the score plot of the two main principal components 
for a T306 fermentation. The accumulated contribution of 
the two PCs was 75.4%. The first component (PC1) 
accounted for 62.9% of the total variance, it was then the 
predominating direction among the others components. 
Figure 4 clearly showed that the visualized information 
essentially concerned the course of fermentation and 
strongly suggested that the direction of component PC1 
would demonstrate the time scale of the culture. The score 
plot defined by the front two principal components showed 
three different groups: the first one (A on Figure 4) 
corresponded to the measurements carried out during the 
lag and fast growth phases (from 0 to 22 hrs), the second 
zone (B on Figure 4, from 22 to 33 hrs) was attributed to 
the main aroma compounds release stage and the third one 
(Figure 4C, 34 hrs to the fermentation end) was related to 
the progressive deceleration phase. Whatever the yeast 
strain was, similar observations were made upon PCA for 
the other fermentation runs.  

The loading plot for the same fermentation is presented on 
Figure 5. A strong positive correlation between chamber 1 
and 2 (except one "T40/1") sensors and PC 1 indicated that 
these sensors were certainly the more sensitive to aroma 
compounds released by the two yeast strains used in the 
study.  

In a second stage, PCA was carried out on the E-nose data 
about fermentations from the two different yeast strains 
together. Whatever the fermentation run chosen, similar 
results were observed. A bi-dimensional plot of the samples 
scores (third fermentation with ICV-K1 and second 

fermentation with T306) in the space defined by the two 
main principal components showed a distinct location of 
ICV-K1 and T306 fermentation samples (Figure 6). 
Besides, in each strain groups, three sub-groups, as 
described above, function of the time course of cultivation 
were observed. Nevertheless, the location of T306 samples 
appeared more compact than the location of ICV-K1 
samples. The second principal component was probably 
less discriminant for the T306 strain during the cultivation 
course. Nevertheless, the ICV-K1 strain has the property to 
having a neutral sensory effect and certainly produces 
lower amounts of aroma compounds than to the T306 strain 
in the same cultivation conditions.  

The PCA showed that the collected E-nose data mainly 
contained chronological information. The two strains were 
distinguishable on score plots of PCA and it would be 
interesting to investigate if the E-nose could be a predictive 
tool and not only a descriptive one.  

Classification of yeast stains 

The main objective was to predict the yeast strain involved 
in a fermentation process analyzing a sample removed from 
the reactor at any time and introduce in the E-nose system. 
As it seemed obvious to use non-redundant variables in 
discriminant factorial analysis (DFA), the four main 
components of PCA were extracted and used as 
uncorrelated input variables in DFA. This methodology 
enabled to decrease the input data dimension and optimize 
the feature vector (Yu et al. 2009a). These front four 
principal components extracted by PCA contributed to 
93,6% of total variance of all the samples. 

The overall performance of DFA with the front four PC 
values was appreciated through a confusion matrix (Table 
2) where the diagonal indicated the correctly identified 
samples (in bold). The correct classification ratio was 
73.2%. This moderate result indicated that an improvement 
of the treatment of the E-nose data before the DFA was 
necessary.  

Particularly, as the time course of fermentation was the 
most important information in the PC1, that did not enable 
to obtain a better classification. A further step of the study 
was thus to modify the E-nose data in order to eliminate the 

Table 3. The confusion matrix showing the strain classification using the front four principal components of PCA of the
normalized data. The accuracy of the classification is defined as (252 + 240) / (290 + 299), namely 83.5%. 

 

  True Class   

 Predicted class  ICV-K1 (287)  T306 (303)  % correct 

 ICV-K1  252  38   86.9 

 T306  59  240  80.3 
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time influence before carrying out DFA. The correlation 
coefficient between each sensor and the biomass and 
ethanol concentration was studied. The three most 
correlated sensors with these two cultivation parameters, 
strongly time dependent, were "P40/1", "P10/1" and 
"P40/2". The sensor responses were then normalized by 
dividing each response of each sensor by the sum of the 
three former sensors responses at the same experimental 
time in order to remove the time influence in sensor 
responses. Figure 7 and Figure 8 present the score plot and 
loading plot of the PCA carried out with the normalized 
data corresponding to a fermentation of each strain. As 
shown in Figure 7, a better description was obtained than 
previously and the two strains were clearly separated along 
the abscise axis. "T30/1" and "T70/2" seemed to be 
particularly correlated to ICV-K1 released components, as 
indicated by the loading plot (Figure 8). This normalization 
step enabled to have chronological information on PC1 axis 
and to collect information related to strain on PC2. The 
time influence on data was then attenuated after the 
normalization step. LDA was performed with the front four 
PCs as previously described for non-normalized data. The 
confusion matrix presented in Table 3 was obtained after 
DFA by cross validation and the correct classification 
achieved 83.5%. The classification was particularly 
improved for the ICV-K1 strain (correct classification ratio: 
86.9%) even though this strain had a rather neutral sensory 
effect during wine fermentation. 

CONCLUDING REMARKS 

This work showed that E-nose is both a descriptive and 
predictive tool for the fermentation monitoring, even for 
alcoholic fermentation thanks to a dehydration and de-
alcoholisation system coupling a GC and E-nose. PCA of 
E-nose responses appeared to be mainly influenced by 
cultivation course. LDA using the front four PC values of 
the PCA as input data had not successfully discriminat the 
two strains ICV-K1 and T306. A specific data treatment of 
normalization to reduce the time’s influence on the E-nose 
data was proposed to obtain information related more 
particularly to yeast strain differences. When the front four 
principal components of PCA with normalized data were 
used as input in LDA, the strain classification was 
improved although the two strains have very similar 
fermentation characteristics.  
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APPENDIX 
 

FIGURES 
 
 

 

Figure 1. Evolution of the glucose concentration ( ), conductance ( ), on-line (optical) ( ) and off-line ( ) biomass 
concentrations during fermentation (ICV-K1 strain). 

 
 

 

Figure 2. Ethanol concentration (g.L-1) changes during the fermentations with ( ) Saccharomyces cerevisiae ICV-K1; and 
( ) Saccharomyces cerevisiae T-306. 
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Figure 3. Time profiles of selected MOS sensor signals from the electronic nose for ICV-K1 strain run. Analyze was performed 
on dehydrated and de-alcoholised headspace of alcoholic fermentation.  

 
 

 
Figure 4. Score plots (PC1 * PC2) of PCA carried out on the E-nose responses of a T306 fermentation. Samples were 
numbered according to time and one analysis was carried out every 30 min. 
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Figure 5. Loading plot of all variables in the plane defined by PC1 * PC2. Data used in PCA corresponded of the E-nose 
responses from one T306 fermentation. 

 
 

 
Figure 6. Score plots (PC1 * PC2) of PCA carried out on the E-nose responses for a T306 fermentation and one ICV-K1 
fermentation. 
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Figure 7. Score plots (PC1 * PC2) of PCA carried out on the E-nose responses for a T306 fermentation and an ICV-K1 
fermentation. The E-nose responses were "normalized" as detailed in the text.  

 

 
Figure 8. Loading plot of all variables in the plane defined by PC1 * PC2. Data used in PCA corresponded of the E-nose 
responses for a T306 fermentation and an ICV-K1 fermentation. The E-nose responses were "normalized" as detailed in the text.  


