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Abstract Most traits of interest in plant breeding show quantitative inheritance, which 
complicate the breeding process since phenotypic performances only partially reflects 
the genetic values of individuals. The genetic variation of a quantitative trait is 
assumed to be controlled by the collective effects of quantitative trait loci (QTLs), 
epistasis (interaction between QTLs), the environment, and interaction between QTL 
and environment. Exploiting molecular markers in breeding involve finding a subset of 
markers associated with one or more QTLs that regulate the expression of complex 
traits. Many QTL mapping studies conducted in the last two decades identified QTLs 
that generally explained a significant proportion of the phenotypic variance, and 
therefore, gave rise to an optimistic assessment of the prospects of markers assisted 
selection. Linkage analysis and association mapping are the two most commonly 
used methods for QTL mapping. This review provides an overview of the two QTL 
mapping methods, including mapping population type and size, phenotypic evaluation 
of the population, molecular profiling of either the entire or a subset of the population, 
marker-trait association analysis using different statistical methods and software as 
well as the future prospects of using markers in crop improvement. 

Keywords: association mapping, linkage disequilibrium, markers assisted selection, 
molecular breeding, molecular markers, quantitative trait, QTL mapping, QTL analysis 

 

INTRODUCTION 

Plant breeding is a three step process, wherein populations or germplasm collections 
with useful genetic variation are created or assembled, individuals with superior 
phenotypes are identified, and improved cultivars are developed from selected 
individuals (Moose and Mumm, 2008). Figure 1 summarizes the different breeding 
methods that are commonly employed in crop improvement programs. Most of the 
traits of interest in plant breeding (e.g., yield, height, drought resistance, disease 
resistance in many species, etc.) are quantitative, also called polygenic, continuous, 
multifactorial or complex traits. A quantitative trait is a measurable trait that depends 
on the cumulative action of many genes and their interaction with the environment 



Semagn et al. 

2 

that can vary among individuals over a given range to produce a continuous 
distribution of phenotypes (Sham et al. 2002). Since the proposal of the multiple-factor 
hypothesis by Nillson-Ehle (1909) and East (1916), the genetic variation of a 
quantitative trait is assumed to be controlled by the collective effects of numerous 
genes, known as quantitative trait loci (QTLs) (Bulmer, 1985; Edwards et al. 1987; 
Falconer and Mackay, 1996; Xu, 1997; Lynch and Walsh, 1998; Xu, 2010). 
Consequently, several QTLs regulate the expression of a single phenotypic trait (in 
this paper, QTL refers to a single region of DNA associated with a particular trait while 
QTLs refers to the situation when two or more regions of DNA from the same or 
different chromosomes are associated with a particular trait). 

Unlike monogenic traits, polygenic traits do not follow patterns of Mendelian 
inheritance (qualitative traits). Instead, their phenotypes typically vary along a 
continuous gradient depicted by a bell curve. Quantitative traits complicate the works 
of breeders because performance only partially reflects the genetic values of the 
individuals. If fruit size, for example, is controlled by a single gene with alleles “s” for 
small and “S” for large, then the progeny of crosses between the two parents would 
segregate in to 3:1 ratios of large- to small- fruited plants. For such discrete traits, one 
can infer the "genotype" (SS or Ss versus ss) by observing the "phenotype" (large or 
small). For quantitative traits, the situation is more complex: (i) quantitative traits are 
controlled by multiple genes or QTLs, and plants with the same phenotype can carry 
different alleles at each of many genes or QTLs; (ii) plants with identical QTL 
genotypes can show different phenotypes when raised under different environments; 
and (iii) the effect of one QTL can depend on the allelic constitution of the plant at 
other QTL. For these reasons, one cannot infer the genotype from the phenotype, and 
one must construct specialized genetic stocks and grow them in precisely controlled 
environments. 

QTLs have been identified for quantitative traits as reported in the literature. The 
number of QTLs detected in a given study depends on different factors, including type 
and size of mapping population used, trait investigated, the number of environments 
used for phenotyping, and genome coverage. The QTLs reported in the literature 
include two groups of genes. The first group constitutes a small proportion of the 
published literature and includes major genes of very large effects on highly heritable 
traits, with each explaining a large portion of the total trait variation in a mapping 
population. Most QTLs reported in the literature fall in another group that are 
regulated by many genes, each explaining small portion of the total trait variation. For 
example, Laurie et al. (2004) reported about 50 QTLs that explained approximately 
50% of the genetic variance for oil concentration in the maize kernel. Buckler et al. 
(2009) evaluated nearly a million maize plants in eight environments and found no 
evidence for any single large effect QTL for flowering time. The authors identified 
numerous QTLs of small additive effects that are shared among families. However, 
the genetic variation of most quantitative traits likely involves a small number of major 
genes or QTLs, a larger number of loci with moderate effects, and a very large 
number of loci with minor effects (Robertson, 1967; Kearsey and Farquhar, 1998). 
The effects of the major genes can be studied via segregation analysis as well as 
evolutionary and selection history. The numerous genes with small effects, however, 
cannot be investigated individually. 
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Fig. 1 Common plant breeding and selection schemes. Each vertical bar is a graphical 
representation of a chromosome of an individual within a breeding population, with colored 
segments indicating genes and/or QTLs that influence traits under selection. Genes associated 
with different traits are shown in different colors (e.g. red, blue). ‘‘X’’ indicates a cross between 
parents, and arrows depict successive crosses of the same type. Asterisk below an individual 
signifies a desirable genotype. (a) In backcrossing scheme, a donor line (blue bar) is crossed to 
an elite line for transferring a specific gene of interest (red). Selected progenies were repeatedly 
backcrossed to the elite parent  with each backcross cycle involving selection of individuals with 
the gene of interest and of the highest proportion of elite parent outside the target genome. (b) In 
gene pyramiding, genes or QTLs associated with different beneficial traits (blue, red, orange, 
green) are combined into the same genotype via crossing and selection. (c) In pedigree 
breeding, two individuals with desirable and complementary phenotypes are crossed; F1 progeny 
are self-pollinated to fix new, improved genotype combinations. (d) In recurrent selection, a 
population of individuals (10 in this example) segregate for two traits (red, blue), each of which is 
influenced by two major favorable QTLs. Intermating among individuals and selection for 
desirable phenotypes/genotypes increases the frequencies of favorable alleles at each locus. 
For this example, no individual in the initial population had all of the favorable alleles, but after 
recurrent selection half of the population possesses the desired genotype (Moose and Mumm, 
2008).  
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The theory of QTL mapping was first described by Sax (1923), where he noted that 
seed size in bean (a complex trait) was associated with seed coat color (a simple, 
monogenic trait). This concept was further elaborated by Thoday (1961), who 
suggested that if the segregation of simply inherited monogenes could be used to 
detect linked QTLs, then it should eventually be possible to map and characterize all 
QTLs involved in complex traits. Before the advent of modern QTL mapping, traits 
showing quantitative variation were studied by statistical analysis of appropriate 
experimental populations based on the means, variances and covariances of 
relatives, with no actual knowledge of the number and location of the genes that 
underlie them (Kearsey and Farquhar, 1998). These studies focused on phenotypic 
distributions of populations and correlations in phenotypes among related individuals 
or lines. New interest in QTL mapping in crops was generated when studies on fruit 
traits of tomato (Paterson et al. 1988) and the morphological and agronomic 
characters of maize (Stuber et al. 1992) successfully demonstrated that some 
molecular markers explained a substantial proportion of the phenotypic variance of 
quantitative traits. 

The two general goals of QTL mapping in plants are to (a) increase our biological 
knowledge of the inheritance and genetic architecture of quantitative traits, both within 
a species and across related species, and (b) identify markers that can be used as 
indirect selection tools in breeding (Bernardo, 2008). During the past two decades, the 
ability to transfer target genomic regions using molecular markers resulted in 
extensive QTL mapping experiments in most economically important crops, aiming at 
the development of molecular markers for marker assisted selection (Xu, 1998; 
Collard et al. 2005; Semagn et al. 2006a; Xu, 2010) and QTL cloning (Salvi and 
Tuberosa, 2005). Results from such studies provide information on (a) the number 
and chromosomal location of QTLs affecting a trait; (b) the magnitude and direction of 
effect of each QTL (i.e., whether a phenotypic trait is controlled by many genes or 
many independent loci of small effect or by a few genes of large effect); (c) the mode 
of gene action at each QTL (dominant or additive); (d) the parental sources of 
beneficial QTL alleles, and (e) whether there is interaction between different QTLs 
(epistasis, i.e., interactions between two QTLs that result in an effect on the trait that 
would not be predicted from the sum of the individual QTL effects) or between 
genotypes and environment (Bradshaw, 1996). Figure 2 and Table 1 summarizes 
results of QTL mapping study in a double haploid hexaploid wheat population for 
Fusarium head blight resistance, deoxynivalenol content and anther extrusion.  Most 
studies identified QTLs that generally explained a significant proportion of the 
phenotypic variance of the respective trait, and therefore, gave rise to an optimistic 
assessment of the prospects of markers assisted selection. However, several studies 
reported many QTLs for a given trait with multiple QTLs in every chromosome. Few 
examples include yield in maize (Tuberosa et al. 2002), nematode resistance in 
soybean (Concibido et al. 2004) and Fusarium head blight resistance in hexaploid 
wheat (Kolb et al. 2001). 

QTL mapping requires that the researcher (1) select and/or develop appropriate 
mapping population (experimental populations for linkage-based mapping or 
natural/breeding populations for association mapping); (2) phenotype the population 
for the trait(s) of interest (morphological characters, agronomic traits, disease and 
pest scores, drought resistance, etc.) under greenhouse, screen-house and/or field 
conditions; (3) decide the type of molecular marker(s), the genotyping approach 
(entire population, selective genotyping or bulk segregant analysis) and generate the 
molecular data for adequate number of uniformly-spaced polymorphic markers; (4) 
identify molecular markers linked to the trait(s) of interest using statistical programs 
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(linkage-based QTL mapping methods requires construction of genetic linkage map); 
and (5) test the applicability and reliability of the markers associated with major QTLs 
in predicting the trait(s) in related families (marker validation or verification) for QTLs 
of medium to large effect. Details on molecular markers, genetic linkage mapping and 
marker assisted selection have been previously reviewed by Semagn et al. (2006a), 
Semagn et al. (2006b) and Semagn et al. (2006c). The availability of a wide range of 
molecular markers and powerful statistical methods has significantly facilitated QTL 
mapping (Figure 3, Figure 4). Linkage analysis and association mapping are the two 
most commonly used tools for dissecting complex traits. Both QTL mapping methods 
begins with the collection of genotypic and phenotypic data from either segregating or 
natural population, followed by statistical analyses to reveal all possible marker loci 
where allelic variation correlates with the phenotype. This article provides an overview 
of the various issues related to the two QTL mapping methods and their future 
prospects in crop improvement programs. Jansen and Nap (2001) introduced the 
concept of genetical genomics, in which genetics and gene expression approaches 
have been joined in detecting expression quantitative trait loci (eQTL) that control the 
observed variation in gene expression. eQTL mapping is different from QTL mapping, 
since researchers are mainly interested in major eQTL in cis (within the gene) and 
major regulatory eQTL in trans. However, eQTL mapping is not part of this review 
paper.  

 

Fig. 2 A likelihood-ratio test statistic (LOD score) plot of hexaploid wheat chromosomes 
1A and 1B showing QTLs for Fusarium head blight (FHB) resistance (black dotted line), 
anther extrusion (AE, solid blue line) and deoxynivalenol (DON) accumulation (pink 
dashed line). LOD scores were obtained for mean phenotypic dataset using composite 
interval mapping. QTL graphs and a threshold of LOD 3.0 are shown on the right of each 
chromosome. Genetic distances are shown in centimorgans (cM) on the left of each 
chromosome. The flanking markers for anther extrusion as an example are shown in bold face 
(Semagn et al. 2007; Skinnes et al. 2010). 
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TYPES OF MAPPING POPULATIONS 

Choice of appropriate mapping population is very critical for the success of any QTL 
mapping project. Populations for QTL mapping can be broadly classified into two: 
experimental populations for linkage-based QTL mapping (e.g., inbred lines for 
autogamous or self pollinating species; half- or full- sib families for outcrossing or 
cross pollinating species) and natural or breeding populations for linkage 
disequilibrium-based association mapping. For association mapping, the populations 
can be classified into one of the following five groups (Yu and Buckler, 2006; Yu et al. 
2006): (i) ideal sample with subtle population structure and familial relatedness, (ii) 
multi-family sample, (iii) sample with population structure, (iv) sample with both 
population structure and familial relationships, and (v) sample with severe population 
structure and familial relationships. Due to local adaptation, selection, and breeding 
history in many plant species, many populations for association mapping would fall 
into category four (Zhu et al. 2008). Alternatively, populations for association mapping 
can be classified according to the source of materials as germplasm bank collections, 
synthetic populations, and elite germplasm (Breseghello and Sorrells, 2006). 

 

Fig. 3 Principles of mapping quantitative trait loci (QTL). (a) Inbred parents that differ in the 
density of trichomes (parent 1: high trichome density; Parent 2: low trichome density) are 
crossed to form an F1 population with intermediate trichome density. (b) An F1 individual is selfed 
to form a population of F2 individuals. (c) Each F2 is selfed for six additional generations, 
ultimately forming a set of recombinant inbred lines (RILs). Each RIL is homozygous for a 
section of a parental chromosome. The RILs are scored for genetic markers, as well as for the 
trichome density phenotype. In (c), the arrow marks a section of chromosome that derives from 
Parent 2 (the parent with low trichome density). The leaves of all individuals that have inherited 
that section of chromosome from the parent with low trichome density also have low trichome 
density, indicating that this chromosomal region probably contains a QTL for this trait (Mauricio, 
2001). 
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Linkage-based QTL mapping depends on well defined populations developed by 
crossing two parents. In autogamous species, QTL mapping studies make use of F2 
or Fx derived families, backcross (BC), recombinant inbred lines (RILs), near isogenic 
lines (NILs), and double haploids (DH). These populations are developed by crossing 
two inbred parents with clear contrasting difference in phenotypic trait(s) of interest. 
Each mapping population developed from inbred parents has its own advantages and 
disadvantages and the researchers need to decide the appropriate population 
depending on project objective, trait complexity, available time, and whether the 
molecular markers to be used for genotyping are dominant or codominant. Both F2 
and BC populations are the simplest types of mapping populations because they are 
easy to construct and require only a short time to produce. F2 is more powerful for 
detecting QTLs with additive effects, and can also be used to estimate the degree of 
dominance for detected QTLs. When dominance is present, backcrosses give biased 
estimates of the effects because additive and dominant effects are completely 
confounded in this design (Carbonell et al. 1993). However, both F2 and BC 
populations have three limitations. First, development of these populations require 
relatively few meioses such that even markers that are far from the QTLs remain 
strongly associated with it. Such long-distance associations hamper precise 
localization of the QTLs. Second, F2 and backcross populations are temporary 
populations as they are highly heterozygous and cannot be propagated indefinitely 
through seeds (i.e., these populations can’t be evaluated several times in different 
environmental conditions, years, locations, etc.). Finally, epistatic interactions could 
hardly be studied in both F2 and backcross populations. 

In classical quantitative genetics, if a trait has a low heritability, one can take the 
family mean as the unit of measurement and select the parents with high average 
performance on the basis of the family mean (Mather and Jinks, 1982) because 
family-mean-based heritability can be significantly increased by increasing the 
number of progenies. This idea has been first applied to genetic mapping for low 
heritability traits in animals by using the daughter or granddaughter designs, where 
the phenotypic value of the sire has been replaced by the mean phenotypic value of 
the daughters (Weller et al. 1990; Ron et al. 2001). The same idea was then applied 
to plants by replacing the phenotypic value of an F2 plant by the mean of F3 progeny, 
called the F2:3 design (Austin and Lee, 1996; Fisch et al. 1996). All F3 progeny derived 
from the same F2 plant belong to the same F2:3 family, denoted by F2:3. If the size of 
each F2:3 family (the number of F3 progeny) is sufficiently large, the average value of 
the family will represent the genotypic value of the F2 plant, and thus the power of 
QTL mapping may significantly increase. One can increase the number of generations 
from 3 to y leading to an Fx:y design. In such cases, genotyping will be done on 
individuals plants in generation x and phenotyping in generation y with y > x (Fisch et 
al. 1996; Jiang and Zeng, 1997; Chapman et al. 2003). Alternatively, genotyping can 
also be done by bulking DNA or leaf tissue of at least 15 individuals from the same 
family at generation y. As y increases at least to 6 generations, the design becomes 
the RILs design. RILs are derived from an F2 population by generations of full-sib 
mating (mating between offspring’s from the same parents for outcrossing species) or 
selfing (bulk or single seed descent) (Soller and Beckman, 1990; Xu and Crouch, 
2008). RILs are advanced homozygous lines that have undergone several rounds of 
inbreeding (Darvasi and Soller, 1995). Such multiple generations of mating increases 
the potential number of recombination events and improves map resolution (i.e., 
sufficient meioses have occurred to reduce disequilibrium between moderately linked 
markers). 
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If backcross selection is repeated at least for six generations, more than 99% of the 
genome of randomly selected individuals at BC6 and above will be derived from the 
recurrent parent. Selfing of selected individuals from BC7F1 will produce two types of 
BC7F2 lines that are homozygous for the two alleles at the target gene locus, which 
are said to be nearly isogenic with each other and with the recipient parent (NILs). 
Heterogeneous inbred family analysis was also proposed as a method to quickly 
develop NILs for an identified QTL in inbred lines (Harris et al. 2007; Pumphrey et al. 
2007; Xu and Crouch, 2008). Selection for the target trait is required for the 
generation of NILs. By essentially fixing the genetic background, NILs are ideal for 
construction of high-resolution mapping, gene expression profiling, and more direct 
hypothesis-driven biological experimentation. NILs are particularly effective genetic 
stocks for studying phenotypic effects attributable to a QTL since the genetic 
background, including morphological and phenological characters that commonly 
influence phenotypic assessments of quantitative traits, is uniform. Double haploid 
(DH) populations have also been used for QTL mapping in several species (e.g., Bao 
et al. 2002; Mahmood et al. 2003; Behn et al. 2005; Semagn et al. 2006d; Semagn et 
al. 2007; Xu and Crouch, 2008). The DH production methodology improves breeding 
efficiency by generating inbred lines with 100% purity and genetic uniformity in just 
two generations. DH lines make it easy to carry genetic studies and shorten the 
breeding time significantly. 

 
Table 1. Summary of the composite interval mapping (CIM) analysis of quantitative trait
loci (QTL) for mean Fusarium head blight severity, deoxynivalenol (DON) content and
anther extrusion in a double haploid population derived from the cross between Arina and
NK93604. For each QTL, chromosomal location, marker interval, LOD, percent of explained
phenotypic variance (R2), and the parent contributing the favored allele are listed. A QTL was
declared significant at LOD ≥ 3.0 (modified from Semagn et al. 2007 and Skinnes et al. 2010). 
 
Chromosome Marker interval Map 

position 
(cM) 

Confidence 
interval 

(cM) 

Fusarium 
head 
blight 

Deoxynivalenol 
content 

Anther 
extrusion 

Parental 
source for  
beneficiary 

allele 
Left marker Right 

marker 
  

LOD R2 LOD R2 LOD R2 
 

1AL Xcfa2129 P46/M62-
94 

96 92-102     4.9 18.3 NK93604 

1AL wPt-5577 Xbarc213 142 140-144 6.5 27.9 5.9 27.9   NK93604 
1BL Xbarc188 wmc766 92 86-102     3.2 7.4 Arina 
1BL P43/M62-

400 
wPt-3475 100 94-104 5.1 19.6 - -   Arina 

2AS wPt-6148 Xbarc124.1 16 14-18 - - 5.8 26.7   NK93604 
4DL XDupW278 Xgwm624 54 46-62     4.6 13.3 Arina 
6AS P33/M50-

257 
Xbarc3 6 4-10     6.0 15.6 Arina 

6BS P46/M62-
107 

P45/M60-
265 

68 64-72 3.0 7.8 - -   Arina 

7AL Xgwm276 XDuPw226 100 94-106 4.9 14.8 - -   NK93604 
 Simultaneous fit (adjusted 

R2) 
  13.9 49.1 8.4 34.0 15.7 53.6  

 

RILs, NILs and DHs are permanent populations because they are homozygous or 
‘true-breeding’ lines that can be multiplied and reproduced without genetic change 
occurring. Seeds from RILs, NILs and DHs can be transferred between different 
laboratories for mapping to ensure that all collaborators examine identical material 
(Young, 1994; Paterson, 1996; He et al. 2001) so that genetic results from 
phenotyping, genotyping and QTL mapping can be accumulated across laboratories. 
The main limitations of NIL and RIL include (i) the long time and/or high cost required 
to develop these populations, and (ii) these populations only detect the additive 
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component but provide no information on dominance relationships for any QTL (Haley 
and Andersson, 1997). DH populations are quicker to generate than RILs and NILs 
but the production of DHs is only possible for species with a well established protocol 
for haploid production. The limitations common to all mapping populations developed 
from inbred lines include (a) the confidence interval for many QTLs mapped using the 
most commonly used population size (100-200 samples) is several centimorgans 
(abbreviated as cM), which could correspond to hundreds of genes (Kroymann and 
Mitchell-Olds, 2005); (b) the low number of alleles sampled per locus in each 
population (Figure 5) makes it difficult to examine the full range of genetic diversity 
available for many plant species; and (c) for some species such as outcrossing, it is 
often impossible due to inbreeding depression or self incompatibility or very 
impractical, time consuming and/or expensive to produce inbred lines. 

 

 
 

Fig. 4 Schematic comparison of linkage analysis with designed mapping populations and 
association mapping with diverse collections. In linkage analysis (panel a, using F2 design 
as an example), there are only few opportunities for recombination to occur within families and 
pedigrees of known ancestry, resulting in relatively low mapping resolution). In association 
mapping (panel b haplotype) historical recombination and natural genetic diversity were 
exploited for high resolution mapping. Linkage disequilibrium between a functional locus (yellow 
diamond for mutated allele) and molecular markers is low except for those within very short 
distance (Zhu et al. 2008). 

Genetic analyses in outcrossing species are far more complicated than species that 
can be selfed to produce inbred lines. Some of the difficulties arise when 
heterozygous and heterogeneous parents are crossed to develop a mapping 
population. First, the number of marker alleles and the segregation pattern of marker 
genotypes may vary from locus to locus in outcrossing species, whereas an inbred 
line-initiated segregating population always has two alleles and an expected 
segregation ratio across different markers. Second, complications arise if parents 
have alleles in common at the QTL or marker loci, or if the parents share QTL alleles 
in different linkage phases with the marker loci (Jansen et al. 1998; Lynch and Walsh, 
1998). Third, linkage phases among different markers are not known a priori for 
outbred parents and, therefore, an algorithm should be used to characterize a most 
likely linkage phase for linkage analysis (Lu et al. 2004). To overcome these 
problems, other strategies based on two-way pseudo-testcross, half-sib and full-sib 
families derived from controlled crosses have been proposed for outcrossing species 
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(Knott and Haley, 1992; Mackinnon and Weller, 1995; Hoeschele et al. 1997; Uimari 
and Hoeschele, 1997; Liu and Dekkers, 1998; Xu, 1998; Sillanpää and Arjas, 1999). 
Grattapaglia and Sederoff (1994) proposed a two-way pseudo-testcross mapping 
strategy in which one parent is heterozygous whereas the other is null for all markers. 
Using this strategy, two parent-specific linkage maps will be constructed. The 
limitation of the pseudo-testcross strategy is that it can only make use of a portion of 
molecular markers. Several other authors (e.g., Ritter and Salamini, 1996; Maliepaard 
et al. 1998; Wu et al. 2002) proposed various approaches for determining the linkage 
and parental linkage phases for any type of molecular markers. Ma et al. (2004) 
devised a general model for estimating the probability of parental linkage phases, 
which allows for a simultaneous estimation of the linkage. Wu et al. (2002) and Lu et 
al. (2004) constructed a unifying likelihood analysis to simultaneously estimate 
linkage, linkage phases and gene order for a group of markers that display all 
possible segregation patterns in a full-sib family derived from two outbred parents. 

Population size and environment  

There is usually a high cost associated with genotyping (generation of molecular 
marker data) and phenotyping (field, greenhouse or screen house evaluation for the 
phenotypic trait) of large population size, particularly for traits requiring extensive field 
trials or complex analysis. Consequently, the size of the mapping population and the 
number of replications and sites (environments) for phenotyping is often limited. Thus, 
most published experiments with replicated trials have used between 100 and 200 
progenies (e.g., Lynch and Walsh, 1998; Somers et al. 2003). Overall, the QTL 
mapping literature has shown that if a breeder can develop a mapping population of 
100-150 progenies derived from an F2 or backcross population between two inbreds, 
obtain reasonably good phenotypic data for the traits of interest, and genotype the 
population with markers spaced about 10 to 15 cM apart, then an analysis of the 
phenotypic and marker data with an appropriate statistical method will almost always 
lead to the identification of at least a few markers associated with each trait of interest 
(Bernardo, 2008). However, small population size often resulted in the detection of 
few QTLs with large phenotypic effects (Beavis, 1998; Melchinger et al. 1998; Utz et 
al. 2000; Schon et al. 2004). Nonetheless, it does not necessarily indicate that QTL 
position will be inaccurate although this may be the case. 

Melchinger et al. (1998) evaluated the power of QTL detection of different traits in 
maize by comparing results from QTL mapping in two independent samples of 
different size from the same population (344 F2 population in experiment-1 and 107 F2 
population in experiment-2). The total number of QTLs detected for all traits in 
experiment-1 was almost triple to that of the numbers detected in experiment-2. Only 
about half of the putative QTLs detected in experiment-2 were in common with QTLs 
identified in experiment-1. In addition, the magnitude of QTL effects can also be 
biased by small sample size. In a study on QTL experiments in maize, for example, 
Beavis (1998) identified one or a few QTLs of large effect along with several QTLs of 
small effect. The fewer the progeny, the higher were the estimated effects of the 
largest QTLs identified. Similarly, Melchinger et al. (2004) partitioned their entire 
dataset for maize testcross progenies (N = 976 genotypes and E = 16 environments) 
into smaller datasets (N = 488, 244, 122 and E = 16, 4, 2) and clearly demonstrated 
highly inflated QTL effects for the smaller samples. Furthermore, the QTLs of large 
phenotypic effect can also be an artifact of the strong directional selection often used 
to create the phenotypically divergent parental lines that are used for mapping 
(Lande, 1983). 
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One of the first published reports of QTL mapping in crops that utilized molecular 
markers involved fruit size, pH, and soluble solids in tomato (Paterson et al. 1988). A 
total of 237 backcross progenies from a cross between cultivated tomato 
(Lycopersicon esculentum) and a wild relative (L. chmielewskii) were analyzed in one 
location and genotyped with 70 restriction fragment length polymorphism (RFLP) 
markers. That study detected 6 QTLs for fruit size, 5 QTLs for pH, and 4 QTLs for 
soluble solids. Subsequently, an F2 population of 350 individuals derived from a cross 
between L. esculentum x L. cheesmanii, along with corresponding F2-derived F3 
families was analyzed in three locations (environments). A total of 29 QTLs for fruit 
size, pH, and soluble solids were detected. However, only 4 QTLs were consistently 
detected in all three environments with 10 QTLs in two environments and 15 QTLs in 
only one environment (Paterson et al. 1991). QTLs of both major (as high as 40% of 
total variation) and minor (as little as 4%) effects were found for all traits. Altogether, 
the identified QTLs for fruit size accounted for 76% of total variation in the trait, 44% 
of total variation in soluble solids, and 34% of total variation in fruit pH. The remainder 
of the variation was presumably a result of (a) environment, (b) measurement error, 
(c) additional QTLs with effects too small to be detected with confidence in such 
population size, (d) interactions between QTLs, which were too small to detect, and 
(e) genotype-by-environment (GxE) interactions (Young, 1996). 

 

 
 

Fig. 5 Schematic comparison of various methods for identifying marker-trait association 
in terms of resolution, research time and allele number. F2/BC refers to F2 and backcross 
populations (Yu and Buckler, 2006). 

 

Schon et al. (2004) used a dataset composed of 976 F5 maize testcross progenies 
evaluated in 19 environments and cross-validation to assess the effect of sample size 
(N), number of test environments (E), and significance threshold on the number of 
detected QTL, the proportion of the genotypic variance explained by them, and the 
corresponding bias of estimates for grain yield, grain moisture, and plant height. The 
number of detected QTLs and the proportion of genotypic variance explained by QTLs 
generally increased more with increasing N than with increasing E. The average bias 
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of QTL estimates and its range were reduced by increasing N and E. A substantial 
bias was found for estimates of the proportion of genotypic variance explained by the 
detected QTLs even with N = 976, irrespective of the trait, the heritability, and the 
significance threshold. This confirm results from the study by Beavis (1998), who 
pointed out that the bias of QTL estimates could not be ignored even for N > 500. As 
pointed out by different investigators (e.g., Knapp et al. 1990; Moreau et al. 1998), it is 
therefore advisable to increase population size rather than the number of test 
environments or replications for most traits unless plot heritabilities are very low 
and/or the expenditures for molecular analyses of additional genotypes are much 
higher than those for additional testing of phenotypes. The comparison of 
subpopulations with the same plot capacities for phenotypic evaluation revealed that 
increasing the number of progenies generally increased the power of QTL detection 
and the proportion of the genotypic variance explained by QTL and reduced the bias 
more efficiently than did increasing the number of test environments. Although 
decision regarding population size and number of phenotyping environments depend 
on several factors (e.g., capacity and resource availability, population type, trait 
heritability, marker type for genotyping, ease in phenotyping, etc.), we recommend at 
least 184 progenies and 3 phenotyping locations (environments). This number is 
recommended based on our experience and enables to organize the entire mapping 
population in two 96-wells plates (each consisting of 92 progenies, 2 parents, F1 and 
a negative control) either for in-house genotyping or outsourcing (genotyping by 
service providers). 

Phenotyping  

The basic phenotypic data required for QTL mapping are the estimates of phenotypic 
performance of individuals across environments. The accuracy and precision of 
phenotyping determines how realistic the QTL mapping results are. The power of QTL 
detection, defined as the probability of detecting a QTL at a given level of statistical 
significance (Manly and Olson, 1999), depends upon the number of progeny in the 
population (sample size), heritability of the trait, genetic dissimilarity among 
progenies, the effect of the QTLs, and the environment used for phenotypic 
evaluation. Due to the availability of high-throughput and low cost molecular tools, 
genotyping no longer limit the sample size in mapping studies but the cost and 
logistics of phenotyping impose limits on sample size. This is especially true of 
phenotypes involving complex traits (Jin et al. 2004). The level of heritability of a trait 
depends in part on whether the phenotyping is repeatable across different seasons, 
locations and environments. Increased precision of phenotyping increases heritability 
which, in turn, increases the statistical power of QTL detection. 

An appropriate phenotyping protocol should consist of (a) a representative sample of 
environments and their optimal location; (b) number of replications per individual in 
each environment; (c) experimental design to effectively account for extraneous 
variation in experimental field; (d) appropriate statistical methods for efficient analysis 
of data; and (e) consideration of QTL x environmental interaction. Replication and 
randomization of individuals and local control of errors, when properly used, have 
three benefits: (a) they allow separation of signal (the true differences in phenotypic 
performance among individuals) from noise; (b) they maximize the signal-to-noise 
ratio; and (c) they deliver a valid and unbiased estimation of level of noise/uncertainty 
in results. Replication simply indicates the number of plots assigned to an individual. It 
is necessary to obtain an internal estimate of experimental error variance and to 
permit separation of the genotype-environment interaction error variance. 
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Randomization provides statistical validity to results and protection from bias. Local 
control of error can be achieved by proper blocking of plots in a manner that 
maximizes inter-block and minimizes intra-block variation. Orientation of the blocks, 
as far as possible, should be perpendicular to the expected gradient in the 
experimental field, glasshouse bench, etc. However, there is always some variation 
left uncontrolled within blocks. Cross-population and environment comparison of 
phenotyping is needed in order to determine how the marker-trait association 
identified under one environment can be used for selection under another (Xu and 
Crouch, 2008). 

Genotyping  

Genotype (molecular markers) data can be generated in either of the following three 
ways: (1) by genotyping an entire mapping population; (2) by genotyping part of the 
population that exhibit extreme phenotypes for the target trait, known as selective 
genotyping (Lander and Botstein 1989; Darvasi, 1997; Vision et al. 2000; Micic et al. 
2005; Xu and Crouch, 2008); or (3) by genotyping bulks of selected individuals, 
known as bulk segregant analysis (Giovanoni et al. 1991; Michelmore et al. 1991; 
Perez-Enciso, 1998; Breen et al. 1999; Fu, 2003). The usual QTL mapping method 
requires genotyping an entire mapping population with markers distributed across the 
whole genome. Such approach is more reliable but extensive, time consuming and 
expensive (Xu and Crouch, 2008). The second approach is selective genotyping 
(Figure 6) which involves genotyping of selected individuals that are chosen on the 
basis of the individuals’ phenotypes (generally those with extremely high and/or low 
phenotypic values). Selective genotyping reduces the number of individuals that 
needs to be genotyped to detect QTLs by using only individuals at one or two extreme 
tails of the phenotypic distribution for the quantitative trait of interest (Lebowitz et al. 
1987; Foolad et al. 1997; Prasad et al. 1999; Roy et al. 1999; Foolad et al. 2001; 
Ayoub and Mather, 2002; Zhang et al. 2003; Xu and Crouch, 2008). Selective 
genotyping is useful in situations in which full-population genotyping is too costly or 
not feasible, or where the objective is to rapidly screen large numbers of potential 
donors for useful alleles with large effects. Unidirectional selective genotyping 
(genotyping one side of the tail) is of particular interest for application within breeding 
programs, because it has the potential to permit QTL detection using superior 
progeny that have been retained under selection in breeding programs (Navabi et al. 
2009). This allows larger numbers of potential donors to be screened for useful alleles 
with effects across different backgrounds. 

There is no clear consensus regarding the number of individuals that need to be 
sampled from each tail. In a population of 436 recombinant inbred rice lines 
segregating for a large-effect QTLs affecting grain yield under drought stress, Navabi 
et al. (2009) reliably detected the QTLs by genotyping as few as 20 selected lines 
(4.5%). According to Ayoub and Mather (2002), genotyping of only 10% of the entire 
population was sufficient to detect all major QTLs. Darvasi and Soller (1992) showed 
that genotyping individuals only from the upper and lower 25% tails of the phenotypic 
distribution was nearly as efficient in detecting QTLs as genotyping the entire 
population. Gallais et al. (2007) suggested genotyping of about 30% for each tail. As 
the population size increases, the proportion of individuals required from each tail will 
decrease such that at a certain point an absolute number of plants from each tail will 
become the critical issue (Sun et al. 2010). However, selective genotyping has not 
been widely adopted, possibly due to distorted segregation in the production of 
linkage maps (Martinez, 1996), the biased estimates of the effects of linked QTLs (Lin 
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and Ritland, 1996), and the constraint of being able to study only a single trait at a 
time. Selective genotyping reduces the size of a mapping population that will, in 
general, decrease the power of QTL detection (Charcosset and Gallais, 1996), 
increase the QTL confidence interval, and increasing the probability of detecting false 
positive QTLs. 

 

 
 

Figure 6. Principle of selective genotyping and bulk segregant analysis. The method of 
selective genotyping implies the selection of individuals with extremely high and low phenotypic 
values (within the shaded area) from the continuous distribution of a quantitative trait of interest. 
The selected individuals are genotyped and association is tested. Bulking segregant analysis 
advances selective genotyping approach one step further by bulking selected individuals at each 
of the two extreme trails, with each tail represented only by one bulk sample. 

 

The third approach is the bulking strategy (Figure 6) that advances the selective 
genotyping approach one step further by using either plant bulking (bulking equal 
weight of leaf from each sample prior to DNA extraction) or DNA pooling (bulking DNA 
after extraction and normalization to the same concentration) from the selected 
individuals at each of the two extreme phenotypes. BSA measures the variation 
present in pools of segregants that have been sorted according to phenotype and 
uses the correlation between these measurements and the pool phenotype to assign 
a likely map location (Brauer et al. 2006). BSA has been successfully used in 
mapping single major genes (Barua et al. 1993; Villar et al. 1996) and two to three 
major QTLs (Quarrie et al. 1999; Shen et al. 2003) with a considerable research-
saving compared to the previous two genotyping approaches. Theoretical analysis of 
BSA for experiments involving backcross, F2 and half-sib designs shows that the 
power of selective DNA pooling for detecting genes with large effect can be the same 
as that obtained by individual selective genotyping. However, BSA is generally not 
regarded as a useful approach for either detection of QTLs which may be conditioned 
by several genes with small effect, or when the QTL is loosely linked to the marker. 
This is because the two bulks are frequently contaminated with alternative alleles if 
mischaracterization exists or recombination occurs (Darvasi and Soller, 1994; Wang 
and Paterson, 1994). As reviewed by Xu and Crouch (2008), the reliability of BSA for 
QTL mapping can be affected by (i) insufficient marker density; (ii) small population 
sizes, resulting in phenotypic differences between pools that are sufficient only to 
identify large-effect genes or QTLs; (iii) inaccurate estimate of allele frequencies 
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within pools; and (iv) high level of false positives. Sun et al. (2010) indicated that 
these problems can be solved by increasing population and tailed sizes and marker 
density. 

QTL MAPPING 

Having generated and entered both the phenotype and genotype data, researchers 
are often eager to test the two hypotheses in QTL analysis or QTL mapping: (i) null 
hypothesis (H0): no QTL is present or a QTL is present but it is not linked to the 
marker(s) and (ii) alternative hypothesis (HA): a QTL is present and it is linked to the 
marker(s). Various statistical methods exist for testing the two hypotheses (e.g., 
Manly and Olson, 1999; Broman, 2001; Mauricio, 2001), which can be grouped into 
three based on the type of population(s) for mapping: (a) those methods that require 
the development of appropriate mapping population(s) using designed crosses 
(analysis of variance, simple interval mapping, composite interval mapping, multiple 
interval mapping); (b) those methods that use natural or breeding populations (e.g., 
linkage disequilibrium-based mapping) and (iii) those methods that use either 
appropriate mapping populations or natural or breeding populations (e.g., principal 
component analysis-based mapping and partial least square regression). The 
statistical methods for QTL mapping can also be grouped into two based on their 
requirements for genetic maps: (a) those methods that don’t require prior genetic 
linkage map construction (analysis of variance, linkage disequilibrium-based mapping, 
principal component analysis-based mapping, partial least squares regression,) or (b) 
those that require availability of genetic map for the population (simple interval 
mapping, composite interval mapping, multiple interval mapping). For the latter, 
researchers need to conduct linkage analyses on the genotypic data and construct a 
genetic linkage map (Semagn et al. 2006d; Semagn et al. 2006a) for the population 
prior to QTL analysis. The statistical methods can also be grouped into two based on 
the distribution of phenotypic traits: (a) parametric methods (those that assume 
normal distribution) or require mathematical transformation of the phenotypic data into 
approximate normal distribution or (b) non-parametric (distribution free) methods. For 
a comprehensive coverage about the statistical methods for QTL detection, see Xu 
(2010). In this section, only basic statistical methods that have been used in QTL 
mapping will be described without providing details on statistical issues. 

Linkage analysis-based QTL mapping  

Statistical methods. Analysis of variance (ANOVA) is the simplest method for QTL 
mapping (Soller et al. 1976). Broman (2001) reviewed details of the methodology of 
QTL mapping using ANOVA. Once genotypic (molecular markers) and phenotypic 
(e.g., disease scores, morphological characters, and agronomic traits) data are 
available for the population in question, ANOVA tests the statistical association of 
molecular markers to the phenotypic traits of interest. At each typed molecular 
marker, one splits the progenies into two groups, according to their genotypes at the 
marker, and compares the phenotype distributions of the two groups. The marker 
locus being tested on a given analysis is called the target locus. The test may include 
additional marker loci, called background markers, that have been shown to be 
associated with the trait and therefore lie close to other QTLs (background QTLs) 
affecting the trait. In this case, each target locus is tested for association by multiple 
regressions in combination with a constant set of background loci (Manly and Olson, 
1999). At each marker locus, the assessment of the strength of evidence for the 
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presence of a QTL is based on t-statistics or F-statistics. In a backcross, one may 
calculate a t-statistics to compare the averages of the two marker genotype groups. 
For other types of crosses (such as the intercross), where there are more than two 
possible genotypes, one uses a more general form of ANOVA, which provides F-
statistics. The main advantages of ANOVA include its simplicity and there is no need 
for a genetic map for the markers because it considers each marker locus separately. 
However, the ANOVA approach for QTL mapping has four limitations (Lander and 
Botstein, 1989; Manly and Olson, 1999; Broman, 2001). First, it is difficult to conduct 
separate estimates of QTL location and QTL effect (proportion of phenotypic variance 
explained by the QTL). Second, individuals with missing genotypes often need to be 
discarded unless a mixed model that can handle unbalanced data and other statistical 
treatments is used. Third, when the markers are widely spaced and/or unevenly 
distributed, the QTL may be quite far from neighboring markers, and hence the power 
for QTL detection will decrease. Finally, there is a large amount of variation within 
each marker class and some of this will be due to other QTLs affecting the trait. 

 

Fig. 7 The interval mapping approach for QTL mapping. The results of QTL mapping are 
plotted as a likelihood-ratio test statistic (LOD score) against the chromosomal map distance, 
measured in recombination units (centiMorgans). The vertical dotted line represents a threshold 
value above which a likelihood-ratio test provides a statistically significant fit to a model of the 
data. The best estimate of the location of the QTL is given by the chromosomal location that 
corresponds to the highest LOD score. In this hypothetical example, maximum LOD score is at 
44 cM and the confidence interval is between 36 and 54 cM. Marker10 is the closest marker to 
the QTL while Marker13 and Marker18 are the two flanking markers. 
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Lander and Botstein (1989) developed a more powerful QTL mapping method, known 
as interval mapping (IM) that is often called simple interval mapping (SIM). Once a 
linkage map and phenotypic data are available for a population, SIM uses one 
marker-interval at a time to search for a hypothetical QTL (the target QTL) by 
performing a likelihood ratio test at every position within the interval. In this approach, 
the QTL is located within a chromosomal interval, defined by the flanking markers. 
Lander and Botstein (1989) proposed a simple rule for constructing confidence 
intervals for QTL position, which uses the likelihoods of odds (LOD score). LOD score 
is the base-10 logarithm of the ratio of two likelihoods (probabilities): the likelihood of 
the observed data assuming a QTL at the position in question and the likelihood 
assuming no QTL. The results of the analysis are plotted as a LOD score against the 
chromosomal map position in cM. The chromosomal location of the maximum LOD 
score is taken as the position of the QTL (Figure 7). 

SIM has become the standard method used by many geneticists for mapping QTL 
and has been implemented in several freely distributed software packages (Basten et 
al. 2002 ; Manly and Olson, 1999). SIM procedure is based on maximum likelihood or 
regression and maximizes the likelihood of a single-gene genetic model by averaging 
over the possible states of the unknown genotype at each possible QTL location. SIM 
has more power and requires fewer progeny than ANOVA (Lander and Botstein, 
1989; Haley and Knott, 1992; Zeng, 1994) but it has its own limitations. First, SIM 
considers one QTL at a time in the model (single-QTL model), ignoring the effects of 
other (mapped or not yet mapped) QTLs. Therefore, SIM can provide a biased 
identification and estimation of the effect and position of QTL when such multiple 
QTLs are located in the same linkage group (Haley and Knott, 1992; Knott and Haley, 
1992; Martinez and Curnow, 1992; Zeng, 1994). Second, QTLs outside the interval 
under consideration can affect the ability to find a QTL within it (Zeng, 1993). Third, 
false identification of a QTL (false positive or ‘ghost peak’) can arise if other QTLs are 
linked to the interval of interest. Haley and Knott (1992) proposed a regression 
approach of interval mapping, which could save time in computation and produce 
similar results to those obtained by maximum likelihood but the estimate of the 
residual variance is biased and the power of QTL detection can be affected (Xu, 
1995). 

Multiple-QTL models are an improvement over single-QTL models because of their 
ability to separate linked QTLs on the same chromosome and to detect interacting 
QTLs that may otherwise be undetected (Schork, 1993). A variety of approaches have 
been proposed for mapping multiple QTLs. Jansen (1993), Zeng (1993) and Zeng 
(1994) independently proposed combining SIM with multiple regression analysis in 
mapping, which is termed as "composite interval mapping" (CIM). Like SIM, CIM 
evaluates the possibility of a target QTL at multiple analysis points across each inter-
marker interval. However, at each point, it also includes the effect of one or more 
background markers that are often referred as cofactors. The purpose of using 
cofactors is to minimize the effects of QTLs in the remainder of the genome when 
attempting to identify a QTL in a particular region. The inclusion of cofactors in the 
analysis helps in one of two ways, depending on whether the background markers 
and the target interval are linked. If they are not linked, inclusion of the background 
markers makes the analysis more sensitive to the presence of a QTL in the target 
interval. If they are linked, inclusion of the background marker may help to separate 
the target QTL from other linked QTL on the far side of the background marker (Zeng, 
1993; Zeng, 1994). There are four major limitations in CIM: (i) CIM can be affected by 
an uneven distribution of markers in the genome (i.e., the test statistics in a marker-
rich region may not be comparable to that in a marker-poor region); (ii) there is 
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difficulty of estimating the joint contribution to the genetic variance of multiple linked 
QTLs; (iii) CIM is not directly extendable for analyzing epistasis; (iv) the use of tightly 
linked markers as cofactors can reduce the statistical power to detect a QTL (Zeng et 
al. 1999). 

To address the limitations of CIM, Kao et al. (1999) proposed and implemented 
multiple interval mapping (MIM) for mapping multiple QTLs simultaneously. The idea 
of MIM is to fit multiple putative QTL effects and associated epistatic effects directly in 
a model to facilitate the search, test and estimation of positions, effects and 
interactions of multiple QTLs. MIM consists of four components: (1) an evaluation 
procedure designed to analyze the likelihood of the data given a genetic model 
(number, positions and epistatic terms of QTL); (2) a search strategy optimized to 
select the best genetic model (among those sampled) in the parameter space; (3) an 
estimation procedure for all parameters of the genetic architecture of the quantitative 
traits (number, positions, effects and epistasis of QTL; genetic variances and 
covariances explained by QTL effects); and (4) a prediction procedure to estimate or 
predict the genotypic values of individuals and their offspring based on the selected 
genetic model and estimated genetic parameter values (Zeng et al. 1999). When 
compared with methods such as SIM and CIM, therefore, MIM tends to be more 
powerful and precise in detecting QTLs. The MIM model is based on Cockerham's 
model for interpreting genetic parameters and the method of maximum likelihood for 
estimating genetic parameters (Kao et al. 1999). Satagopan et al. (1996) and 
Sillanpää and Arjas (1998) used a Bayesian approach relying on a Markov chain 
Monte Carlo simulation to map multiple QTLs. 

 

 
 

Fig. 8 Decay of linkage disequilibrium (LD) with time for four different recombination 
fractions (θ). For unlinked loci (θ = 0.5), LD decays rapidly within a small number of 
generations. For closely linked loci (θ < 0.05), the decay in LD is extremely slow. Abbreviation: D 
= coefficient of LD (Mackay and Powell, 2007). 

 

All the different QTL mapping methods described above share a common assumption 
that the phenotype follows a normal distribution with equal variance in both parents. 
The least-squares and ANOVA based methods (Weller et al. 1990; Haley and Knott, 
1992; Martinez and Curnow, 1992) assume that residual errors (i.e., residuals within 
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QTL genotype classes) are normally distributed. Such methods are commonly said to 
be robust against non-normality. However, robustness against any type of non-
normality in the context of QTL mapping methods has not been well established. On 
the other hand, maximum-likelihood based methods in interval mapping (Lander and 
Botstein, 1989) use the normal density function for the building of the likelihood itself. 
Quality of estimations is therefore very dependent on the normality of the phenotype. 
Many phenotypes of interest, however, are not normally distributed so the previously 
described QTL mapping methods cannot be directly applied in such cases. One 
approach to circumvent the assumption of normality is to use a mathematical 
transformation (e.g., logarithm of 10, arcsine, etc.) that will convert the trait into an 
approximately normal distribution with equal variance in both parents (Wright, 1968). 
An alternative approach is to apply nonparametric (distribution free) statistical 
methods to QTL mapping that are applicable to any phenotypic distribution. Kruglyak 
and Lander (1995) described a non-parametric interval mapping approach based on 
the Wilcoxon rank-sum test applicable to experimental crosses. Coppieters et al. 
(1998) adapted this method to half-sib pedigrees in outbred populations.  

Tests for QTL position and significance. One of the challenges for QTL mapping is 
the difficulty of determining appropriate significance thresholds (critical values) for the 
two types of errors: (a) that there is a segregating QTL whereas in reality there is not 
(false positive or type I error), and (b) that there is no QTL although it actually is 
present (false negative or type II error). The problem of determining appropriate 
threshold values appeared to be difficult because there are many factors that can vary 
from experiment to experiment and can influence the distribution of the test statistics. 
These include, but are not limited to, the sample size, the genome size of the 
organism under study, the genetic map density, segregation ratio distortions, the 
proportion and pattern of missing data, and the number and magnitude of segregating 
QTLs (Churchill and Doerge, 1994). Several papers addressed the problem of 
statistical significance in QTL analysis and presented solutions for hypothesis testing 
that are based on cumulative distribution functions of the LOD score (Lander and 
Botstein, 1989), permutation tests (Churchill and Doerge, 1994), bootstrap resampling 
method (Efron, 1979; Mammen, 1993) or a bootstrap model selection procedure 
(Shao, 1996). 

Lander and Botstein (1989) used a “LOD drop-off method”, finding the location to 
each side of the estimated QTL location corresponding to a decrease of one from the 
maximum LOD score. Figure 7 illustrates this using a hypothetical data. The 
maximum LOD score is at 44 cM, and the confidence interval is between 36 and 54 
cM. Most researchers use a minimum LOD score of 3.0 or its equivalent to declare a 
QTL. The introduction of different resampling methods, such as permutation tests 
(Churchill and Doerge, 1994; Doerge and Churchill, 1996), bootstrap resampling 
method (Efron, 1979; Mammen, 1993; Visscher et al. 1996), bootstrap model 
selection procedure (Shao, 1996) and cross validation (Utz et al. 2000) provided a 
computationally simple and free of dubious assumptions for establishing the 
significance threshold value. Permutation tests generate many different samples from 
the actual data by "shuffling" the trait values with respect to the marker genotypes to 
estimate empirically the threshold for a test statistic for detection of a QTL. This 
approach accounts for missing marker data, actual marker densities, and nonrandom 
segregation of marker alleles. A permuted sample is generated from the data by 
randomly pairing phenotypes and genotypes in the sample, stimulating the null 
hypothesis of no intrinsic association between genotypes and phenotypes (no QTL). 
The statistical test is then performed over the whole genome on the permuted sample 
for QTL, and the maximum test statistics is recorded. This permutation analysis is 
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repeated for a number of replicates (usually 1,000 permutations) to obtain a 
distribution of the maximum test statistics, and from the distribution to obtain the 
threshold value. One then compares this threshold with the test statistics from the 
original sample, and declares the existence of a QTL if the peak test statistics in a 
region exceeds the threshold. Subsequently, Doerge and Churchill (1996) extended 
the permutation method for detecting multiple QTLs using conditional empirical 
threshold or residual empirical threshold. Compared with the standard permutation 
test, the latter two methods tend to have greater statistical power. However, the 
methods are not designed for detecting multiple linked QTLs. 

For MIM, where model selection is involved, Zeng et al. (1999) proposed using a 
bootstrap re-sampling method for hypothesis testing. However, the heavy 
computational burden has limited the use of the bootstrap test. Furthermore, it is 
unclear how to apply the bootstrap method in Zeng et al. (1999) to the situation where 
a nonlinear model, such as logistic regression or a Poisson model, is used to map 
multiple QTLs with MIM, since the bootstrap procedure is performed on model-based 
residuals. The importance of cross-validation (CV) has been strongly emphasized by 
Utz et al. (2000). CV is a technique for assessing how the results of a statistical 
analysis will generalize to an independent dataset. It is done by partitioning the data 
into complementary subsets for performing the initial analysis and validation set for 
validating the analysis. Utz et al. (2000) showed that the proportion of genotypic 
variance explained in QTL-models based on composite interval mapping, may be 
over-optimistic. All such analyses should include CV against other environments, re-
sampled genotypes from the same population or both. 

Limitations of linkage-based QTL mapping methods. The linkage analysis-based 
QTL mapping methods have the following limitations. First, the need for evenly 
distributed marker spacing of 10-20 cM (Darvasi et al. 1993) and a high number of 
informative individuals may make linkage a somewhat limited and even unsuccessful 
procedure (Lander and Kruglyak, 1995). It should, however be noted that dense 
markers may pose problems for linkage analysis software’s in providing correct 
marker order and can lead to erroneous QTL mapping results as has recently been 
reported by Collard et al. (2009). Second, the parents used to develop the mapping 
population may be out-of-date by the time when the genotype and phenotype data is 
available. Many marker development projects for annual crops are using populations 
that were established five or more years before the genotyping work. This could 
reduce the value of the information gathered and the scope of its implementation. 
Third, QTL identification based on linkage studies identify chromosomal regions, not 
individual genes, which may affect a trait. Linkage analysis in plants typically localizes 
QTLs within 10 to 20 cM intervals because of the limited number of recombination 
events that occur during the construction of mapping populations and the cost for 
propagating and evaluating a large number of lines (Doerge, 2002; Holland, 2007). 
For species with large genome size, this large interval may contain many genes 
unless the chromosomal region associated with the trait is fine mapped by genotyping 
large population size with thousands of high throughput and low cost markers, such 
as single nucleotide polymorphic (SNP) markers. 

Association mapping 

Linkage disequilibrium-based association analysis is the second QTL mapping 
method. The terms linkage disequilibrium (LD) and association mapping have often 
been used interchangeably in literature. According to Gupta et al. (2005), however, 
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association mapping refers to significant association of a molecular marker with a 
phenotypic trait while LD refers to non-random association between two markers 
(alleles at different loci), between two genes or QTLs, between a gene/QTL and a 
marker locus. Thus, association mapping is one of the several uses of LD. The terms 
linkage and LD are also often confused. Linkage refers to the correlated inheritance of 
loci through the physical connection on a chromosome, whereas LD refers to the 
correlation between alleles in a population (Flint-Garcia et al. 2003) but not 
necessarily on the same chromosome. LD can be used in plant genomes for 
construction of LD maps, for studying marker-trait association both independently and 
in combination with linkage analysis, and for the study of population genetics and 
evolution both in nature and under domestication (Gupta et al. 2005). 

 

 
 

Figure 9. Linkage disequilibrium (LD) decay plot. The squared correlation between paired 
marker intensities on the y-axis is plotted against the distance between pairs of markers in centi-
Morgan (cM) on the x-axis. LD between pairs of markers on different non-homologous 
chromosomes is represented by the symbol ∞. The commonly accepted reference value for r2 of 
0.1 indicates LD to decay at about 3 cM. The critical test value for r2 is 0.03 for a test level of 
0.01. Using this critical value as threshold, LD decays at about 8 cM (D'Hoop et al. 2008).  

 

Association mapping generally falls into two broad categories: (i) candidate-gene 
association mapping, which relates polymorphisms in selected candidate genes that 
have purported roles in controlling phenotypic variation for specific traits; and (ii) 
genome-wide association mapping, or genome scan, which surveys genetic variation 
in the whole genome to find signals of association for various complex traits (Risch 
and Merikangas, 1996). For candidate-gene association mapping, information 
regarding the location and function of genes involved in genetic, biochemical or 
physiological pathways that lead to final trait variation is often required (Risch and 
Merikangas, 1996; Mackay, 2001). Candidate-gene association mapping requires the 
identification of SNPs between lines and within specific genes because SNPs offer 
the highest resolution for mapping QTLs and are potentially in LD with the causative 
polymorphism (Rafalski, 2002). Whole-genome association scans requires high-
capacity DNA sequencing instruments or high-density oligonucleotide (oligo) arrays to 
efficiently identify SNPs at a density that accurately reflects genome-wide LD 
structure and haplotype diversity. As sequencing and genotyping costs continue to 
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decrease, we expect to see more genome-wide association mapping. As reviewed by 
Zhu et al. (2008), population size for several association mapping studies is about 
100, which is much lower compared to individuals used for linkage-based QTL 
mapping. However, Zhu et al. (2008) simulations with empirical maize data show that 
a large sample size is required to obtain high power to detect genetic effects of 
moderate size. 

Association mapping is a population-based survey that capitalizes on historical 
recombination to identify candidate genes affecting complex traits (Falconer and 
Mackay, 1996). Unlike linkage analysis, where familial relationships are used to 
predict correlations between phenotype and genotype, association mapping rely on 
previous, unrecorded sources of disequilibrium to create population-wide marker-
phenotype associations (Kruglyak, 1999; Ewens and Spielman, 2001; Jannink et al. 
2001). Genetic diversity is evaluated across natural populations to identify 
polymorphisms that correlate with phenotypic variation. LD is seen in large 
populations over many generations when selective pressure increases or decreases 
the frequency of particular alleles or allelic combinations (Falconer and Mackay, 1996) 
(Figure 8). Association mapping and linkage mapping differ in terms of how the 
genetic architecture of the trait affects statistical power. The importance of a particular 
allele in phenotypic variation across a population depends on its frequency, as well as 
on its effect. Thus, association mapping has low power to detect rare alleles, even if 
these alleles have a large phenotypic effect. Conversely, alleles that are identified by 
linkage-based mapping that involves crosses between two essentially randomly 
chosen parents can have a large effect but might not be important from an 
evolutionary perspective because they are rare. Thus, mapping QTLs by using 
crosses might bias researchers towards identifying rare (and often perhaps 
deleterious) alleles that have large effects but little relevance to most of the 
phenotypic diversity found in nature (Nordborg and Weigel, 2008). Linkage analysis 
with experimental populations derived from a bi-parental cross provides pertinent 
information about traits that tends to be specific to the same or genetically related 
populations, while results from association mapping are more applicable to a much 
wider germplasm base. The ability to map QTLs in collections of breeding lines, 
landraces, or samples from natural populations has great potential for future trait 
improvement and food security. 

However, several factors contribute to false positives and affect the success of LD 
mapping: (i) there are a number of factors that can lead to an increase in LD (e.g., 
population structure or subdivision, population admixture, population bottleneck or 
small population size, natural and artificial selection, inbreeding, genetic isolation 
between lineages, and low recombination rate); (ii) some factors lead to a decrease or 
disruption in LD (e.g., outcrossing, high recombination rate, and high mutation rate); 
and (iii) other factors may lead to either an increase or a decrease in LD, or may 
increase LD between some pairs of alleles and decrease LD between other pairs 
(e.g., mutations and genomic rearrangements). Several statistical methods have been 
proposed to account for population structure and familial relatedness, structured 
association (Pritchard and Rosenberg, 1999; Pritchard et al. 2000; Falush et al. 
2003), genomic control (Devlin and Roeder, 1999), mixed model approach (Yu et al. 
2006), and principal component approach (Price et al. 2006). 
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Table 2. The most commonly used QTL mapping statistical programs for both linkage-
based and linkage disequlibrium-based mapping methods, their operating system, and 
online links. 
 
Name Version Platform  

(operating 
system) 

Description Availability References Online links 
(verified in July 
2009) 

Map 
Manager 
QTX 

b29 Windows, 
 Mac OS 

A graphic, 
interactive program 
to map quantitative 
trait loci using 
intercrosses, 
backcrosses or 
recombinant inbred 
strains in 
experimental plants 
or animals. 

Free Manly and 
Olson, 1999. 

http://www.mapman
ager.org/mmQTX.ht
ml 

Mapmaker/
QTL 

1.1 UNIX, VMS, 
DOS, Mac 
OS 

A package 
containing a 
program for genetic 
linkage analysis 
and a program for 
mapping genes 
underlying complex 
traits. 

Free Lincoln et al. 
1992. 

http://www.broadins
titute.org/ftp/distribu
tion/software/mapm
aker3/ 

MapQTL 5 Windows ® 
(95/98/ME/N
T4.0/2000/X
P/Vista 32-
bit 

Mapping of 
quantitative trait 
loci (QTL) for 
several types of 
experimental 
mapping 
populations. 

Comercial Van Ooijen, 
2009. 

http://www.kyazma.
nl/index.php/mc.Ma
pQTL/sc 

PlabQTL 1.2 DOS A program 
characterizing loci 
that affect the 
variation of 
quantitative traits. 

Free Utz and 
Melchinger, 
2003. 

https://www.uni-
hohenheim.de/plant
breeding/software/ 

QGene 4.0 Any 
computer 

An entirely rebuilt 
Java application 
that will run on any 
computer. 

Free Nelson, 1997. http://www.qgene.or
g/ 

QTL 
Cartographer 

2.5 for 
Windows 

UNIX, DOS, 
Windows, 
Mac OS 

A program to map 
quantitative traits 
using a map of 
molecular markers. 

Free Basten et al. 
1994; Wang et 
al. 2007. 

http://statgen.ncsu.
edu/qtlcart/index.ph
p 

Structure 2.3 DOS, 
Windows, 
UNIX 
(Solaris), 
Linux 

A program for 
investigating 
population 
structure. 

Free Pritchard et al. 
2000. 

http://pritch.bsd.uchi
cago.edu/structure.
html 

TASSEL 2 Web-based 
(operating 
system 
independent) 

A software 
package for 
association 
mapping, diversity 
estimation and 
calculating linkage 
disequilibrium. 

Free Zhang et al. 
2006. 

http://sourceforge.n
et/projects/tassel 
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LD can be caused by admixture of subpopulation, which leads to false-positive results 
if not correctly controlled in statistical analysis. Such false-positives arise when testing 
random genetic markers with different frequencies in subpopulations for a trait with 
parallel phenotypic differences. If, however, the distribution of functional alleles is 
highly correlated with population structure, statistically controlling for population 
structure can result in false-negatives, particularly for small sample sizes. Although 
population subdivision increases LD, its effect depends on the number of populations, 
the rate of exchange between populations, and the recombination rate (Pritchard and 
Przeworski, 2001). Association studies, therefore, are best carried out in independent 
populations with a large sample size (Yu and Buckler, 2006). Admixture is gene flow 
between individuals of genetically distinct populations followed by intermating. 
Admixture results in the introduction of chromosomes of different ancestry and allele 
frequencies. Often, the resulting LD extends to unlinked sites, even on different 
chromosomes, but breaks down rapidly with random mating. In small populations, the 
effects of genetic drift result in the consistent loss of rare allelic combinations, which 
increase LD levels but in the absence of other mitigating factors (such as population 
subdivision), this effect should be short-lived (Wall et al. 2002). The same is true of 
directional selection; strong selection for a particular allele limits genetic diversity 
around a locus, resulting in a short-term increase in LD around the selected gene. 
Effective detectable recombination rate and LD decay decreases as homozygosity 
increases. Thus, LD decays more rapidly in outcrossing species as compared to 
selfing species (Nordborg, 2000) because recombination is less effective in selfing 
species, where individuals are more likely to be homozygous, than in outcrossing 
species. Mutations will disrupt LD between pairs involving wild alleles, and will 
promote LD between pairs involving mutant alleles. Similarly, genomic 
rearrangements may disrupt LD between genes separated due to rearrangement, but 
LD may increase between new gene combinations in the vicinity of breakpoints due to 
suppression of local recombination. All of the various factors described above affect 
the utility of LD for localizing QTLs. Any evolutionary force that increases LD beyond 
that expected by chance in an ideal population will inflate the rate of false-positive 
associations. 

Statistical measures for LD. The basic statistics for association analysis, under an 
ideal situation, would be linear regression, analysis of variance (ANOVA), t-test or chi-
square test. However, as population structure can generate spurious genotype-
phenotype associations, different statistical approaches have been designed to deal 
with this confounding factor. The different measures and methods for estimating the 
level of LD includes two-locus methods, transmission disequilibrium test, admixture 
disequilibrium mapping, least-squares multilocus method, and haplotype segment 
sharing methods (Jorde, 2000). These methods have been described in different 
reviews (Jorde, 2000; Flint-Garcia et al. 2003; Gaut and Long, 2003; Gupta et al. 
2005; Mackay and Powell, 2007). 

Although a variety of statistics have been used to measure LD, the two most 
commonly used statistics are r2 (square of the correlation coefficient) and D' 
(disequilibrium coefficient). The statistics r2 and D' reflect different aspects of LD and 
perform differently under various conditions. Whereas r2 summarizes both 
recombinational and mutational history, D' measures only recombinational history and 
is therefore the more accurate statistics for estimating recombination differences. 
However, D' is strongly affected by small sample sizes, resulting in highly erratic 
behavior when comparing loci with low allele frequencies. For the purpose of 
examining the resolution of association studies, Flint-Garcia et al. (2003) suggested 
using r2 statistics, as it is indicative of how markers might correlate with the QTL of 
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interest. The two common ways to visualize the extent of LD between pairs of loci are 
(a) LD decay plots (Figure 9) and (b) disequilibrium matrices. LD decay plots are used 
to visualize the rate at which LD declines with genetic or physical distance (Figure 9). 
Scatter plots of r2 values versus genetic/physical distances between all pairs of alleles 
within a gene, along a chromosome, or across the genome are constructed. The 
decay of LD over physical distance in a population determines the density of marker 
coverage needed to perform an association analysis. Figure 10 illustrates the number 
of markers required for association mapping in 3 crops of different genome size (rice 
= 466 x 103 kilobase pair, abbreviated as kb; Sorghum = 735 x 103 kb; maize = 2400 x 
103 kb). If LD decays rapidly, then a higher marker density is required to capture 
markers located close enough to functional sites (Flint-Garcia et al. 2003; Gaut and 
Long, 2003).  

The extent and patterns of linkage disequilibrium have been characterized in several 
crop species. In maize, r2 decays within 0.3-2 kb, and this rapid decay may be due to 
its outcrossing mating system (Remington et al. 2001; Tenaillon et al. 2001). In 
commercial maize inbred lines, LD decay may be slower and linkage blocks may 
extend more than 100 kb (Ching et al. 2002). For regions that have experienced 
strong selective sweeps, LD may extend over 500 kb (Jung et al. 2004). Yan et al. 
(2009) genotyped 632 lines with 1229 SNPs that represent 538 loci and reported an 
average LD decay ranging from 5 kb to 10 kb depending on the chromosome. In 
sorghum, r2 > 0.1 is observed between 15 to 20 kb (Hamblin et al. 2005). High levels 
of marker association (r2 > 0.1) across a 212 kb region was observed in cultivated, 
elite varieties of barley, while in landrace accessions, LD levels persist to about 90 kb 
(Caldwell et al. 2006). In rice, LD decay of about 100 kb has been reported around a 
disease resistance locus (Garris et al. 2003). Using unlinked SNPs to determine the 
amount of background linkage disequilibrium in different rice population, Mather et al. 
(2007) reported LD decay of about 500 kb in temperate japonica, 150 kb in tropical 
japonica and 75 kb in indica. These results, together with others, clearly demonstrated 
the high variability in LD decay depending upon the species, populations, or genomic 
region under consideration. A single study determining LD for a species can therefore 
not be projected to all populations of the species. Inference of LD levels across the 
genome of a population can also be misleading because LD patterns are variable 
among chromosomes and over distance. 

Advantages and disadvantages of LD. There are six potential advantages of the 
LD-based QTL mapping in crop species. First, it increases mapping resolution, 
reduced research time, and reveal greater allele number (Yu and Buckler, 2006). 
Second, LD mapping provides detailed marker data points on a large number of lines 
and varieties, which will be valuable in several breeding strategies. Third, the LD 
approach uses real breeding populations, the material is diverse and relevant, and the 
most important genes should be segregating in such populations (Figure 5). Plant 
breeders are often reluctant to grow and assess a huge number of lines with little or 
no potential for direct commercial outcome such as required for genetic map 
construction and fine mapping of QTLs. The advantage of LD mapping to the breeder 
is that mapping and commercial variety development is conducted simultaneously. 
Fourth, pattern analysis of marker data might detect complex combinations (even 
epistatic interactions) between alleles at several loci, which underlie the superior 
individuals in a breeding population. This might prove difficult to isolate and validate 
using the linkage-based mapping approach. Fifth, LD studies have proven to be more 
powerful for genes of small to modest effects (Risch and Merikangas, 1996), reduce 
sample requirements in terms of size and structure as compared to those needed for 
linkage studies to obtain similar significance, and narrow the distance between the 
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expected site of the locus and the nearest marker. Finally, LD approach has the 
potential not only to identify and map QTLs (Meuwissen and Goddard, 2000), but also 
to identify (a) causal polymorphism within a gene that is responsible for the difference 
in two alternative phenotypes (Palaisa et al. 2003, Palaisa et al. 2004), and (b) 
haplotype blocks and haplotypes representing different alleles of a gene and their 
combinations. 

 

 
 

Figure 10. Number of SNP markers required for association mapping at different LD 
decays for 3 crops of different genome size (rice: 466 megabases, abbreviated as Mb; 
sorghum: 735 Mb; Maize: 2400 Mb). 

 

However, LD-based mapping has several potential disadvantages. First, it assumes 
that the trait of interest is segregating in the breeding material and hence may not 
assist in the identification and introgression of novel alleles. Therefore, there will be a 
continuing requirement for advanced backcross QTL (AB-QTL) mapping for 
introgression of novel alleles from wild relatives (Tanksley and Nelson, 1996) and a 
capability for map construction for other special cases. Second, LD mapping 
strategies will work best where there is strong selection pressure for the trait of 
interest, so the location and management of field trials and the design and application 
of laboratory assays is crucial to its success. Third, LD mapping provides little insight 
into the mechanistic basis of LD detected (e.g., LD may not be due to linkage in all 
cases) so that genomic localization and cloning of genes based on LD may not be 
successful, particularly for those with relatively small effect. This is because a strong 
LD may sometimes be due to recent occurrence of LD rather than a close physical 
linkage between the two loci. Fourth, several factors can affect the reliability of LD 
mapping in plants, including population structure or subdivision, population admixture, 
population bottleneck (small population size), natural and artificial selection, 
inbreeding, genetic isolation between lineages, recombination rate, outcrossing, 
mutation, and genomic rearrangements (e.g., Gaut and Long, 2003; Gupta et al. 
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2005). Fifth, LD mapping often requires genotyping the mapping populations with 
large number of markers (Yan et al. 2009). The number of markers required for 
whole-genome scan depends on the genome size of the species and the expected LD 
decay. If LD decays at 5 kb, for example, the number of SNPs required for genotyping 
will be as high as 93200 for rice, 147000 for sorghum, 480000 for maize, 1.1 million 
for barley and 3.2 million for hexaploid wheat. The number of markers will decrease 
sharply if LD decay is expected at about 100 kb (4660 SNPs for rice, 7350 SNPs for 
sorghum, 24000 SNPs for maize, 57000 SNPs for barley and 160000 SNPs for 
hexaploid wheat). Such high density marker requirement can only be achieved 
through the development of an integrated genotyping by sequencing platform and 
analytical tools.  

Other QTL mapping methods  

Both the linkage-based and LD-based QTL mapping methods have their own 
limitations when used alone. A new joint linkage and LD mapping strategy has been 
devised for genetic mapping, taking advantage of each approach (Wu and Zeng, 
2001; Wu et al. 2002). The approach of combined linkage analysis and LD for QTL 
analysis has been extended for multi-trait fine mapping of QTLs (Lund et al. 2003; 
Meuwissen and Goddard, 2004; Gupta et al. 2005).  

Multivariate analysis for multi-trait QTL detection in inbred lines has been proposed by 
different authors (Jiang and Zeng, 1995; Korol et al. 1995; Weller et al. 1996; Knott 
and Haley, 2000). Ronin et al. (1995) have extended this to half sib families. Weller et 
al. (1996) proposed to synthesize most of the information in a linear combination of 
the traits and used principal component analysis (PCA) for multi-trait detection of 
QTLs in dairy cow. PCA was then used for mapping QTLs in genetic crosses (Liu et 
al. 1996; Zeng et al. 2000; Gilbert and LeRoy, 2003; Upadyayula et al. 2006) and 
association analysis in pedigrees (Chase et al. 2002). Yan et al. (2003) have 
developed a PCA-based program called ‘‘GGE analyses for the genetic analysis of 
GxE interactions, QTL and diallels in barley". Bjørnstad et al. (2004) described the 
utility of bi-linear modeling by cross-validated partial least squares regression (PLSR) 
for exploring the relationship between genotype and phenotype. 

Statistical programs for QTL mapping 

A large quantity of mapping data can now be produced at an unprecedented rate, 
requiring the use of dedicated computer programs to extract all embedded 
information. Several statistical packages have been developed for QTL mapping in 
the last two decades, which are among about 400 genetic analysis software’s that are 
listed at http://www.nslij-genetics.org/soft/ and offer a panel of standard and more 
sophisticated analyses. The review below provides a brief outline of some of the most 
commonly used statistical software’s for QTL mapping, including their operating 
systems and their online links (Table 2). 

Statistical programs for linkage-based mapping 

1. QTL Cartographer (Basten et al. 1994; Basten et al. 2002; Wang et al. 2007) 
is a suite of programs for DOS, UNIX, MacOS or Windows. QTL 
Cartographer is distinguished by its menu-driven interface, its more detailed 
documentation, and its resampling methods. Windows QTL Cartographer 
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(WinQTLCart) maps QTLs in cross populations from inbred lines. 
WinQTLCart includes a graphic tool for presenting mapping results and can 
import and export data in a variety of formats. This program implements the 
following statistical methods: single-marker analysis, interval mapping, 
composite interval mapping, Bayesian interval mapping, multiple interval 
mapping, multiple trait analysis, and multiple trait MIM analysis. 

2. MAPMAKER/QTL (Lincoln et al. 1992) is a widely used program for UNIX, 
DOS and Mac OS operating systems. Researchers need to follow three 
basic stages for doing QTL analysis with Mapmaker/QTL: (i) prepare the 
data into the format that Mapmaker needs; (ii) constructing genetic map for 
the marker data (establish linkage groups, calculate map distances and 
determine locus orders) with MAPMAKER/EXP (Lincoln et al. 1992), and (iii) 
feed the marker and phenotype data along with marker distances for each 
linkage group into Mapmaker/QTL and run QTL analyses. 

3. PlabQTL (Utz and Melchinger, 2003) is a script-driven program for DOS or 
AIX that is designed to analyze automatically a dataset at increasing levels 
of complexity in successive runs. Like MAPMAKE/QTL, researchers need to 
construct genetic map for the marker data, prepare a complete input file that 
consists of the marker data, the linkage map, and the phenotypic observation 
values. The complete data set needs to be accompanied by an analysis 
controlling command file that should instruct the program to perform either 
simple interval mapping or composite interval mapping. 

4. QGene (Nelson, 1997), version 4.0, is a program with a variety of graphics 
for displaying analyses outputs. These functions make it uniquely useful for 
rapid exploration of data using any computer. However, it does not perform 
CIM. 

5. Map Manager QTX (Manly et al. 2001) is a Mac OS or Windows based 
program for the analysis of genetic mapping experiments in experimental 
plants and animals. It includes functions for mapping both Mendelian and 
quantitative trait loci. QTX is an enhanced version of Map Manager QT, 
which was designed to be used either as a mapping program itself or as a 
data-preparation program for other mapping programs. 

6. MapQTL (Van Ooijen, 2009) is a Windows-based commercial program that 
is distinguished by its ability to map QTLs in populations derived from both 
inbred parents (BC1, F2, RIL, DH) and non-inbred parents (full-sib family) in 
which both markers and QTL may have more than two alleles. It also offers a 
nonparametric form of single-locus association, the Kruskal-Wallis rank sum 
test, which is applicable for data with distributions far from normal. The input 
data for MapQTL is a plain text files with a flexible layout of the quantitative 
trait data, the molecular marker genotypes and the linkage map. 

7. Epistat (Chase et al. 1997) is a DOS operating interactive program that 
combines statistical methods and color-graphic. The program organizes 
genetic mapping data and quantitative trait values into color graphic displays 
which illustrate the individual effects of a single QTL as well as the 
interactions between pairs of QTLs. For a given trait, the program displays 
the effects of the alleles at each of two loci on the quantitative trait value, as 
well as the effects of the interactions between these alleles. Log likelihood 
ratios are used to compare the likelihood of explaining the effects by null, 
additive, or epistatic models. This program does not perform interval 
mapping and therefore does not require prior genetic map construction. 

Statistical programs for LD-based mapping. Trait Analysis by aSSociation, 
Evolution, and Linkage (acronym - TASSEL), (Zhang et al. 2006) is the most 
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commonly used software for association mapping in plants and is frequently updated 
as new methods are developed (Bradbury et al. 2007). In addition to association 
analysis (i.e., logistic regression, linear model, and mixed model), TASSEL is also 
used for calculation and graphical display of linkage disequilibrium statistics, browsing 
and importation of genotypic and phenotypic data, and evolutionary patterns. The 
software has three advantages: (i) it integrates various diversity databases, including 
Panzea (http://www.panzea.org), Gramene (http://www.gramene.org), and Germinate 
(http://bioinf.scri.ac.uk/germinate/wordpress), by means of Genomic Diversity and 
Phenotype Connection (GDPC) middleware; (ii) it provides new statistical approaches 
to association mapping such as a General Linear Model (GLM) and Mixed Linear 
Model (MLM), and (iii) it has the ability to handle a wide range of indels (insertion & 
deletions), which is ignored by most software package.  

SAS software (SAS Institute, 1999) and R (Ihaka and Gentleman, 1996) often are 
used by advanced researchers with programming skills as the platform to develop 
various methods. SAS/GENETICS is a Windows, UNIX(HPUX/AIXR/Solaris) and 
MVS based commercial program added to the SAS System software for summarizing 
marker properties (allele and genotype frequencies, tests for Hardy-Weinberg 
equilibrium, measures of marker informativeness), examining marker-marker 
relationships (tests and measures of linkage disequilibrium, and haplotype frequency 
estimation), and exploring marker-trait associations using case-control or family-
based tests. The complex breeding history of many important crops and the limited 
gene flow in most wild plants has created population structure or stratification within 
the germplasm (Sharbel et al. 2000). Since population structure tends to create 
spurious LD between unlinked markers (Nei and Li, 1973; Pritchard and Przeworski, 
2001), scientists need to conduct complementary analyses on genotypic data to 
assess for population structure before proceeding with LD analysis. Various statistical 
programs have been described in the literature for assessing population structure 
(e.g., Jorde, 2000; Gupta et al. 2005) but only some of them have been used in 
plants. These include STRUCTURE (Pritchard et al. 2000), Arlequin (Excoffier et al. 
2005), FSTAT (Goudet, 1995), GENEPOP (Raymond and Rousset, 1995), Genetic 
Data Analysis (GDA), (Weir, 1996), and GENETIX (Belkhir et al. 1996-2004). For 
example, STRUCTURE is a DOS, Windows, UNIX (Solaris) and Linux based program 
that implements a model-based clustering method for inferring the presence of 
population structure, identifying distinct genetic populations, assigning individuals to 
populations, and identifying migrants and admixed individuals. 

PROGRESSES AND FUTURE PROSPECTS 

Since the early 1990s, numerous studies have identified molecular markers linked to 
QTLs involved in the inheritance of agronomically important traits in a wide range of 
crop species. Following the discovery of promising QTLs and identification of 
molecular markers, MAS has been used to transfer single genes or QTL in various 
species. However, published results in QTL introgressions through MAS are variable, 
ranging from successful experiments to those with limited success and even a failure 
(see Semagn et al. 2006b for review). The rate of success starts to decrease when 
five or more target QTLs for complex traits are introgressed in to a given germplasm 
(Lawson et al. 1997; Shen et al. 2001; Bouchez et al. 2002; Ribaut et al. 2002a; 
Lecomte et al. 2004; Thabuis et al. 2004). Several factors may contribute for such 
failure or unexpected results in MAS: (i) errors in QTL mapping (the putative QTL may 
be a false positive or the QTL effect might have been over estimated); (ii) the 
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repeatability of the QTL across different genetic background and/or environments 
might have not be confirmed (e.g., Melchinger et al. 1998; Schon et al. 2004); (iii) 
there may be QTL by environment and QTL by QTL interactions (e.g., Ribaut et al. 
2002a, Ribaut et al. 2002b); (iv) pleiotrophic effects (Tuberosa et al. 2002); and (v) the 
chromosomal segments associated with QTL hold not just one but several genes, and 
recombination between those genes would then modify the effect of the introgressed 
segments (e.g., Eshed and Zamir, 1995; Monna et al. 2002). For example, Kroymann 
and Mitchell-Olds (2005) find mapped phenotypic effects segregating within a one-
centimorgan chromosome interval in Arabidopsis thaliana for which lines with mapped 
recombination breakpoints were available, and examined the sequence signature of 
historical polymorphism. The authors found that the 1 cM chromosome interval 
contained two growth rate QTLs within 210 kilobases (kb). Both QTLs showed 
epistasis (i.e., their phenotypic effects depended on the genetic background). This 
amount of complexity in such a small area suggests a highly polygenic architecture of 
quantitative variation, much more than previously documented (Koornneef et al. 
2004). 

 

 
 

Figure 11. Goals and approaches for using molecular markers to study and select for 
complex traits in plants (Bernardo, 2008).  

 

Overestimation of the effect of QTLs is often a major problem because QTLs whose 
effects are overestimated are more likely to be detected above the necessary 
stringent threshold than are those whose effects are correctly estimated or 
underestimated. Spurious QTLs (false positives) are occasionally detected and this 
represents an overestimation of an effect that is actually zero (Haley and Andersson, 
1997). Furthermore, most primary or coarse QTL mapping studies using small 
population size and low marker density allows only for an approximate mapping of the 
chromosomal region. Therefore, identification of reliable QTL is a preliminary step in 
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developing a marker assisted selection programs for genetic improvement. To utilize 
QTLs in selective breeding or to identify functional genes, the identified major QTLs 
should be fine mapped to a higher level of resolution for QTL position and verified or 
validated in additional genetic backgrounds and environments by developing 
advanced segregating populations with large numbers of recombinations in the region 
of interest. QTL verification is defined as the repeated detection of the same marker 
alleles at a similar position on the genetic map of a chromosome, of a QTL controlling 
a trait under more than one set of experimental conditions (Brown et al. 2003). 
Verification of QTL is necessary to substantiate a biological basis for observed 
marker-trait associations, to provide precise estimates of the magnitude of QTL 
effects, and to predict QTL expression at a given age or in a particular environment. 
Only then will sufficient experimental evidence be in place to monitor the transmission 
of trait genes via closely linked markers as a selection criterion (Young, 1999). 

Fine mapping of major QTLs requires the construction of special populations with 
large numbers of recombinations in the region identified by the coarse genome scan 
(Darvasi, 1998; Pumphrey et al. 2007). A widely adopted strategy to estimate the 
position and effect of a coarsely mapped QTLs more accurately is to create a new 
experimental population by crossing nearly isogenic lines (NILs) that differ only in the 
allelic constitution at the short chromosome segment harbouring the QTL (QTL-NILs). 
In such a population, because of the absence of other segregating QTLs, the target 
QTL becomes the major genetic source of variation, and the phenotypic means of the 
QTL genotypic classes (+/+, -/- and, when present, +/-) can be statistically 
differentiated and genotypes recognized accordingly (Salvi and Tuberosa, 2005). 

However, there are at least three shortcomings regarding QTL fine mapping and 
validation. First, time and effort required for developing NILs, introgression libraries, 
advanced backcross QTL (AB-QTL) introgression lines, as well as the limited genetic 
variability as a result of using only two parental lines are crucial aspects to be 
considered. Second, the time and cost required to genotype, and adequately 
phenotype the fine mapping and validation populations also represents a substantial 
investment and slows the application of marker information to genetic improvement 
(Pumphrey et al. 2007). Third, it is almost impossible to fine map several minor QTLs 
associated with highly complex traits, such as drought tolerance and yield for different 
reasons: (a) the magnitude of inconsistency in estimated QTL effects is much higher 
for complex traits controlled by many minor QTLs rather than by a few major QTLs; 
(b) most QTLs are often background or germplasm specific and estimated QTL 
effects will have limited transferability across populations (i.e., QTL mapping for such 
traits will likely have to be repeated for each breeding population); (c) as complex 
traits controlled by many QTLs are subject to genotype -by- environment interaction, 
QTL mapping for the same population will likely have to be performed for each target 
set of environments; and (d) as the effects of sampling error are large, population 
sizes of 500-1000 are needed for mapping QTLs per se (Bernardo, 2008). In such 
cases, it is unlikely that a “QTL hunt”, involving traditional mapping of QTLs in a small 
number of crosses, with the objective of tracking useful alleles that will have 
consistent and large effects in other backgrounds via MAS, will be successful. 

To overcome some of the problems in fine mapping, and/or QTL validation, marker 
assisted recurrent selection (MARS) (Edwards and Johnson, 1994; Hospital et al. 
1997; Johnson, 2004; Bernardo and Charcosset, 2006) and genomewide selection 
(also called genomic selection), (Meuwissen et al. 2001; Bernardo and Yu, 2007; 
Wong and Bernardo, 2008; Bernardo, 2009; Heffner et al. 2009; Zhong et al. 2009; 
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Jannink et al. 2010) have been proposed for accumulating favorable alleles from 
many QTLs (up to 100 QTLs based on simulation studies) for highly polygenic traits 
(Bernardo and Yu, 2007; Bernardo, 2008). MARS refers to the improvement of an F2 
population by one cycle of marker-assisted selection (i.e., based on phenotypic data 
and marker scores) followed by three cycles of selection based on marker scores only 
(Johnson, 2001; Johnson, 2004). The marker scores are typically determined from 
about 20 to 35 markers that have been identified, in a multiple-regression model, as 
significantly associated with one or more traits of interest (Koebner, 2003). 
Genomewide selection refers to marker-based selection without significance testing 
and without identifying of a subset of markers associated with the trait (Meuwissen et 
al. 2001). It focuses purely on prediction of performance and avoids QTL mapping 
altogether (Bernardo, 2008; Heffner et al. 2009). 

The current trend in molecular breeding is to combine the different QTL mapping 
methods (Figure 11) with methods in functional genomics (Varshney et al. 2006) and 
QTL cloning (Tuberosa and Salvi, 2006). The genetic maps of many organisms are 
now becoming increasingly dense, and the cost of genotyping is decreasing. The 
development of high resolution maps facilitates the isolation of actual genes or 
quantitative trait nucleotide (QTN) (rather than markers) via map-based cloning (also 
called positional cloning). The identification of genes controlling important traits will 
enable plant scientists to predict gene function using reverse genetics methods (e.g., 
TILLING, Eco-TILLING; (McCallum et al. 2000; Comai et al. 2004), isolate 
homologues and conduct transgenic experiments. The use of gene sequences 
derived from expressed sequence tags (ESTs) or gene analogues, described as the 
‘candidate gene approach’, holds promise in identifying the actual genes that control 
the desired traits (Yamamoto and Sasaki, 1997; Cato et al. 2001; Pflieger et al. 2001). 
The number of EST and genomic sequences available in databases is growing rapidly 
(especially from genome sequencing projects), and the accumulation of these 
sequences will be extremely useful for the discovery of single nucleotide 
polymorphisms (SNPs) and data mining for new markers in the future (Gupta et al. 
2001; Kantety et al. 2002). 

To enhance the efficiency of MAS, knowledge of the DNA sequence of the gene 
enables the design of direct markers, which are located within the actual gene, thus 
eliminating the possibility of recombination between marker and gene (Ogbonnaya et 
al. 2001; Ellis et al. 2002). With continuous advances in sequencing technologies, 
genome-based selection is likely to replace the conventional marker-based 
genotyping approach to provide a powerful tool for high resolution mapping and large-
scale gene discovery. However, genomewide selection requires several important 
components including (a) very high marker density (with hundreds of thousands of 
SNP markers) that cannot be met with any of the currently available marker 
technologies, (b) high throughput low cost DNA extraction method, (c) rapid, cost 
effective and high throughput large-scale genotyping system, (d) efficient sample 
collection and tracking system, and (e) automated data management, analyses and 
interpretation. The future of molecular breeding is therefore building huge data sets 
and mathematical models that can predict genotypes that will perform well under 
specific environments. This information will then be used to help breeders create the 
right cross that most efficiently maximizes agricultural output (yield and quality) with 
use of minimal input resources. 
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