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Background: Optimization of nutrient feeding was developed to improve the growth of Bacillus subtilis in fed
batch fermentation to increase the production of jiean-peptide (JAA). A central composite design (CCD) was
used to obtain a model describing the relationship between glucose, total nitrogen, and the maximum cell dry
weight in the culture broth with fed batch fermentation in a 5 L fermentor.
Results: The results were analyzed using response surface methodology (RSM), and the optimized values of
glucose and total nitrogen concentration were 30.70 g/L and 1.68 g/L in the culture, respectively. The highest
cell dry weight was improved to 77.50 g/L in fed batch fermentation, which is 280% higher than the batch
fermentation concentration (20.37 g/L). This led to a 44% increase of JAA production in fed batch fermentation

as compared to the production of batch fermentation.
Conclusion: The results of this work improve the present production of JAA and may be adopted for other
objective products' production.
© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Different strains of Bacillus subtilis can produce a variety of
antimicrobial cyclic lipopeptides, including iturin A, fengycins, and
surfactins [1]. In 2001, our laboratory in Chengdu, China isolated a new
strain of B. subtilis that was able to produce an agricultural antibiotic
jiean-peptide (JAA), which was believed to belong to the iturin family
[2]. Members of this family are cyclic lipoheptapeptides linked by a
β-amino acid residue; and have strong antibiotic activity and moderate
surfactant activity [3]. Previous studies have shown that JAA could
be used as a fungicide against various crop diseases, including cotton
fusarium wilt, tomato rhizoctonia rot, and wheat powdery mildew, all
of which can decrease significantly the growth and productivity of
these crops [4]. JAA poses little risk to the environment because of its
d Católica de Valparaíso.
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low levels of toxicity and lack of allergic effects on the host [5].
Therefore, JAA has great potential for use against crop fungus diseases.
Despite these decisive benefits, the commercial production of JAA has
been limited, resulting from the low cell density of B. subtilis cultures
and low production in fermentation.

Fed batch fermentation techniques have been applied extensively in
industrial fermentation processes for enhancing cell density and the
generation of products of interest. The major advantage of fed batch
fermentation is the ability to adjust the substrate concentration in the
culture broth to a value suitable for cell growth and production [6,7,8].
However, optimization of fed batch processes is challenging. The
challenge of dynamic fed batch optimization often involves the resolution
of high-order, nonlinear and multimodal systems [9]. Empirical feeding
policies have been developed to achieve high cell density cultures. The
simplest technique is a constant feeding rate. These methods, however,
do not consider cell dynamics. An exponential feed rate has been used
by taking into consideration the cell growth dynamics [10]. In recent
efforts, both stochastic and deterministic search techniques have been
applied to maximize cell concentration and productivity in the process
of fed batch fermentation. Evolutionary algorithms, such as genetic
algorithms mimicking the principles of natural biological evolution
[11,12], or an ant colony algorithm mimicking the cooperative search
behavior of ants in real life [13], have also been applied to solve for
optimal feed-rate profiles. In addition to these population-based search
evier B.V. All rights reserved.
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techniques, many point-based search techniques have been applied to
determine optimal feed-rate profiles [14]. For instance, Lee et al. [10]
successfully applied the conjugate gradient algorithm for optimizing fed
batch fermentations for poly-β-hydroxybutyric acid production. Cuthrell
and Biegler employed an orthogonal collocation-based sequential
quadratic programming to optimize fed batch culture for penicillin
production [15]. In all of these cases, a mathematical model was used
to describe the relationship between biomass and the concentration of
the limiting substrate.

Previous studies on JAA fermentation have found that the limiting
substrates including glucose and total nitrogen are themain influencing
factors for cell growth and JAA accumulation [16] and that the response
surface methodology (RSM) is an effective strategy for optimizing JAA
production by B. subtilis ZK8 in a shake flask culture [2]. Compared
with conventional methods for optimization, RSM is a time- and
labor-saving method [17,18], which consists mainly of the central
composite design (CCD), the box-behnken design (BBD), the one factor
design, theD-optimal design, the user-defined design, and the historical
data design. The CCD and BBD are the most commonly used response
surface design methods, and have 5 levels and 3 levels, respectively,
for one numeric factor. RSM has been used successfully for production
optimization of many products, including enzyme [19,20], antibiotics
[21,22] and biofuel [23,24].

In this study, we have used RSM with a CCD for optimization of cell
growth in fed batch fermentation by B. subtilis ZK8 in order to improve
JAA production.
2. Materials and methods

2.1. Microorganism

B. subtilis ZK8, which produces large amounts of JAA, is a mutant of
the original B. subtilis ZK.
2.2. Culture media

The seed medium was composed of (in g/L) peptone, 30; glucose,
25; MgSO4 × 7H2O, 3; KH2PO4, 4.

The fermentation medium was composed of (in g/L) glucose, 37;
total nitrogen of soybeanmeal hydrolysate (TNSMH), 2.4; yeast extract,
0.8; MgSO4 × 7H2O, 3.5; KH2PO4, 1.1.

The initial pH values of the two media were 7.0.
The fed concentrated carbon source was composed of (in g/L)

glucose, 377.
The fed concentrated nitrogen source was composed of (in g/L)

TNSMH, 9.0.
2.3. Culture conditions

A seed culture was grown in a 500 mL flask (containing 120 mL of
seed medium) on a shaker at 30°C for 20 h. An inoculum of 200 mL
was introduced into a 5 L stirred bioreactor (BG-5, Baoxing Biotech
Co., Shanghai, China) containing 2 L of fermentation medium. The
bioreactor was equipped with pH, temperature and agitation speed
controls and a dissolved oxygen display. The temperature and the initial
stirring speed were maintained at 30°C and 300 rpm, respectively. The
aeration rate was fixed at 1.0 vvm. The dissolved oxygen concentration
(DOC) was maintained at 30% ± 5% saturation by dynamic linkage 30%
DOC and stirring speed during the fastigium of oxygen consumption.

The fed batch culture was started as a batch culture. A concentrated
carbon source and nitrogen sourcewere fed into the bioreactor from the
10th h to the 15th h of cultivation to maintain the concentration of
glucose and total nitrogen at an appropriate value. The two peristaltic
pumps were calibrated before starting the fed batch fermentation.
2.4. Design of the optimal concentration of glucose and total nitrogen

A CCD with five coded levels (-1.41, -1, 0, +1 and +1.41) was used
to elucidate the influence of the glucose concentration and total
nitrogen concentration on cell dry weight, from the 11th h to the 15th h
of cultivation. According to this design, the total number of treatment
combinations was 2k + 2 k+ n0, where k is the number of independent
variables and n0 is the number of repetitions of experiments at the
center point [25]. The treatments were carried out in duplicate as
independent experiments to take into account the non-adjustable data
and the analysis of variance (ANOVA). The results of the CCD were fit
with a second-order polynomial equation using a multiple regression
technique in [Equation 1]:

Y ¼ β0 þ
Xk

i

βixi þ
Xk

ii

βiixi
2 þ

X

ib j

βijxix j ½Equation 1�

where Y is the predicted response, β0 is the offset term, βi is the ith linear
coefficient, βii is the ith quadratic coefficient and βij is the ijth interaction
coefficient.

All experiments were carried out in duplicate, and the results were
averaged. The CCD and statistical analysis of the data were performed
with the Design Expert software package (version 7.1.5, State-Ease
Inc., Minneapolis, MN, USA). The models were analyzed statistically by
using the analysis of variance (ANOVA). The quality of the polynomial
model equations was judged statistically by the coefficient of
determination, R2, and its statistical significance was determined by
the F-test. The significance of the regression coefficients was tested by
Student's t-test [26].
2.5. Cell concentration

Cell mass was monitored intermittently by measuring the cell
density of the culture broth with a blood cell count board. The dry cell
weight was determined from a calibration curve between the dry cell
mass and the cell density. For accurate cell mass measurements at a
high concentration range, the dry cell mass was measured by
centrifuging 10 mL of culture broth, washing with distilled water, and
drying in the oven at 80°C for 12 h.
2.6. Glucose and total nitrogen concentration

The cell cultures taken from the fermentor were centrifuged and the
glucose concentration was determined by the dinitrosalicylic acid
(DNS) method [27]. The total nitrogen concentration was determined
by a modified Kjeldahl method [28].
2.7. Extraction and quantification of JAA

A10mL sample of B. subtilis ZK8 culturewas centrifuged at 12,000× g
for 10 m. The supernatant was recovered, adjusted to pH 2.0 with 15%
(v/v) HCl, and then centrifuged at 12,000 × g for 10min. The precipitate
was recovered and mixed with 10 mL of methanol/50 mM ammonium
acetate (8:2, v/v). After extraction for 30min, themixturewas centrifuged
at 12,000 × g for 10 min and the supernatant was recovered. Samples
of the supernatant were analyzed by reverse-phase, high-performance
liquid chromatography (RP-HPLC) using an HC-C18 column (4.6 mm ×
150 mm, Agilent, USA) in an LC-10AT HPLC system (SHIMADZU,
Kyoto, Japan) operated at a flow rate of 0.8 mL/min. A mixture of
methanol and 50 mM ammonium acetate (8:2, v/v) was used as the
eluent, and the outflow of the column was monitored by measuring
the absorbance at 214 nm.
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Fig. 1. The development of Bacillus subtilis cell growth, glucose and total nitrogen
consumption with time in batch fermentation.
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3. Results and discussion

3.1. Cell growth and substrates consumption in batch fermentation

Prior to the fed batch study, batch fermentation was carried out
to study the cell growth and substrate consumption. Fig. 1 shows the
development of B. subtilis cell growth, glucose and total nitrogen
consumptions with time in batch fermentation. Cell growth started
immediately after inoculation of the fermentor. Exponential growth was
observed for a short period (6–15 h), in which glucose and total nitrogen
consumptions were very fast. According to the parameters of cell
dry weight, glucose and total nitrogen concentrations in the course of
exponential growth, the specific rates of glucose and total nitrogen
consumptions were calculated as 0.2863 and 0.0132 h-1, respectively.
Although the maximum cell growth was obtained at 18 h, the
fermentation time of 10 h, having the highest specific rates of glucose
and total nitrogen consumption was considered as the optimal time to
start feeding both substrates. At this time, glucose and total nitrogen
concentrations were 30.0 g/L and 1.74 g/L, respectively.

3.2. Optimal feed rate profiles by a nonsingular control algorithm

According to the above results of the specific rates of glucose and total
nitrogen consumptions, the feed rate equations for both substrates in the
10th h–11th h of the fermentation process can be written as follows:

VC‐10 ¼ 0:2863 x X10 þ x1‐30:0ð Þ ½Equation 2�

VN‐10 ¼ 0:0132 x X10 þ x2‐1:74ð Þ ½Equation 3�
Table 1
Design and responses of the central composite design (CCD).

Run Coded values and real values

X1 X2

1 -1 (28.0) -1 (1.40)
2 -1 (28.0) 1 (1.80)
3 1 (32.0) -1 (1.40)
4 1 (32.0) 1 (1.80)
5 -1.41 (27.2) 0 (1.60)
6 1.41 (32.8) 0 (1.60)
7 0 (30.0) -1.41 (1.32)
8 0 (30.0) 1.41 (1.88)
9 0 (30.0) 0 (1.60)
10 0 (30.0) 0 (1.60)

X1: Glucose, g/L; X2: Total nitrogen, g/L.
Where VC-10 (g/L/h) and VN-10 (g/L/h) are the feed rates of glucose
and total nitrogen in the 10th h–11th h of the fermentation process. X10
(g/L) is the concentration of cells at the 10th h of cultivation, and x1 and
x2 are the designated concentrations of glucose and total nitrogen in CCD.

The feed rate equations for both substrates in the 11th h–15th h of
the fermentation process can be written as follows:

VC‐S ¼ 0:2863� XS ½Equation 4�

VN‐S ¼ 0:0132� XS ½Equation 5�

whereVC-S (g/L/h) andVN-S (g/L/h) are the feed rates of glucose and total
nitrogen, respectively, at the Sth h of cultivation. XS (g/L) is the
concentration of cells at the Sth h of cultivation.

The key feature of the above approach was the formulation of
the feeding sequence, and a feedback law expressed in terms of state
variables and a few parameters for singular feed rate calculation as
decision variables. Depending on the process kinetics, the feedback
law maintains the substrate concentration constant, or allows its
variation in a predetermined manner in the singular interval [29].

3.3. Optimized control of the concentrations of glucose and total nitrogen in
fed batch fermentation

The optimal control of the concentration of glucose and total
nitrogen from the 11th h to 15th h of cultivation versus the maximum
cell dry weight was conducted by CCD. The design matrix and the
corresponding experimental data are given in Table 1. The experimental
results of the CCD were fit to a second-order polynomial in [Equation 6]:

Y ¼ 74:5þ 7:42X1 þ 5:58X2‐X1X2‐9:31X1
2
‐9:06X2

2 ½Equation 6�

The fit of the model Y was evaluated by the coefficient of
determination, R2, which was 0.9531, indicating that 95.31% of the
variability in the response could be explained by the model (Table 2).
The statistical significance of the model equation was evaluated by an
F-test ANOVA, which revealed that this regression was statistically
significant (P =0.0092) at the 99% confidence level. Table 2 shows the
significance of the regression coefficient of the model, indicating that
the glucose (X1) (P = 0.0057) and the total nitrogen (X2) (P = 0.0156)
had highly significant effects on the maximum cell dry weight. The effect
of the interaction of glucose (X1) and total nitrogen (X2)wasnot significant
(P = 0.6221) at the 90% confidence level. The contour plot described by
the model Y is represented in Fig. 2, which shows that the maximum cell
dry weight was approximately 75 g/L. The optimal concentrations for
glucose (X1) and total nitrogen (X2) obtained from the maximum point
of themodelwere 30.70 g/L forX1 and 1.68 g/L forX2. Themodel predicted
a maximum cell dry weight of 76.79 g/L for this point.

Many authors have studied and continue to study the application of
advanced controls to fermentative processes. The advanced controls
Maximum cell dry weight (g/L)

Experimental Predicted

46.01 42.20
59.21 55.46
60.19 59.18
69.22 68.27
41.11 45.61
66.13 66.61
46.23 48.78
62.12 64.54
75.03 74.74
74.45 74.74



Table 2
Analysis of variance for the experimental results of the central composite design (CCD).

Source DF Sum of squares Mean square F value Prob N F

X1
a 1 443.63 443.63 29.06 0.0057⁎⁎

X2 1 249.78 249.78 16.34 0.0156⁎

X1
2 1 401.36 401.36 26.25 0.0069⁎⁎

X2
2 1 377.94 377.94 24.72 0.0076⁎⁎

X1X2 1 4.35 4.35 0.28 0.6221
Model 5 1243.45 248.69 16.27 0.0092⁎⁎

Error 4 61.069 15.29
Total 9 1304.60
R2 = 0.9531 Adj-R2 = 0.8945

a The symbols are the same as those in Table 1.
⁎ Statistically significant at a probability level of 90%.
⁎⁎ Statistically significant at a probability level of 99%.
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have been utilized mostly with respect to a particular substrate and the
substrate feed rate [30,31]. However, San and Stephanopoulos [32]
hypothesized that controlling the feed rate of a substrate could lead to
a suboptimal reactor performance. The fermentor performance might
depend heavily on the biomass and the reactor substrate concentration,
especially when the proportion of carbon and nitrogen sources utilized
by the organisms is variable in different fermentation processes.
Therefore, San and Stephanopoulos [32] proposed another optimal
strategy: controlling the concentration of different substrates by
controlling the feed rate of the substrates. In this study, feeding both
substrates and optimizing their concentration at the same time were
carried out by CCD. The results showed that it was a successful and
effective optimal feeding strategy for improving biomass production.
3.4. Validation of the optimized fed batch fermentation

To verify the modeling results, experiments were done in triplicate,
using the optimized conditions to represent the maximum point of the
cell dry weight in the course of fed batch fermentation. The predicted
maximum dry cell weight was 76.79 g/L, and the average value
obtained in the experiments was 77.50 g/L. This is an improvement of
concentration by about 280% relative to that in batch fermentation
(20.37 g/L). The good correlation between the predicted and experimental
values after optimization justified the validity of the response model
and the existence of an optimum point. At this point, the maximum
concentration of JAA was 0.574 g/L, which is an improvement of the
concentration by about 44% relative to that in batch fermentation. The
dry cell weight value of 77.50 g/L was higher than those reported for
fed batch fermentation by some B. subtilis variants using an optimized
feeding strategy for the substrate [9,33].
Fig. 2. Response surface plot, described by the model Y fitted from the experimental
results of the central composite design (CCD) represents the effect of total nitrogen and
glucose on cell dry weight.
3.5. Comparison of JAA production in batch and optimal fed batch
fermentation

To enable comparison with batch fermentation, the values of the
parameters and the initial conditions were kept the same; the final
volume of fed batch fermentation should not be higher than 10% that
of batch fermentation. The superiority of optimal fed batch operation
is evident from Fig. 3. The dry cell weight and JAA production are
consistently higher than batch fermentation with the same starting
condition after 10 h of cultivation. At the end of 36 h period, the optimal
fed batch fermentation produced 280% more cell dry weight than batch
fermentation, but only 44%more JAAproduction thanbatch fermentation.
Weobserved that JAAproduction throughoptimal fed batch fermentation
continued to rise after 36 h of cultivation, although the rate of increase
slowed down. While in batch fermentation, JAA production declined
after 30 h of cultivation. It might therefore be possible to improve this
performance by allowing the duration of fermentation to exceed 36 h
so as to trade off between improved JAAproduction and the time allowed.
In addition, Fig. 3 shows that there were two phases of JAA accumulation
in batch and fed batch fermentation: the first phase was associated with
cell growth, and the second phase was not associated with cell growth.
These results concur with a previous report stating that the relation
between the cell growth and JAA formation was a relation combining
growth-associated and nongrowth-associated processes [2]. In this
study, the cell dry weight was improved more than JAA production
in fed batch fermentation as compared to the production of batch
fermentation. Future studies will focus on further optimization, in which
the cell dry weight and JAA production will be considered at the same
time.

4. Concluding remarks

The RSM with a CCD was used to optimize the growth of B. subtilis
to increase the production of JAA in fed batch fermentation using a 5 L
fermentor. The optimized values of glucose and total nitrogen
concentrations in the culture were identified as 30.70 g/L and 1.68 g/L,
respectively. Operated under the optimized conditions, the highest cell
dry weight was improved to 77.50 g/L in fed batch fermentation. This
value was 280% higher than the batch fermentation concentration
(20.37 g/L), leading to a 44% increase of JAA production in fed batch
fermentation as compared to the production of batch fermentation.
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