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ABSTRACT

Background: Integrated statistical experimental designs were applied to optimize the medium constituents for
the production of a dimethyl phthalate (DMP)-degrading strain Bacillus sp. QD14 in shake-flask cultures. A
Plackett-Burman design (PBD) was applied to screen for significant factors, followed by the Steepest Ascent
Method (SAM) to find the nearest region of maximum response. A Box-Behnken design (BBD) of the
Response Surface Methodology (RSM) was conducted to optimize the final levels of the medium components.
Results: After the regression equation and response surface contour plots were analyzed, the concentrations of
glucose, corn meal and NaCl were found to significantly influence the biomass of DMP-degrading bacteria. A
combination of 22.88 g/L of glucose, 11.74 g/L of corn meal, and 10.34 g/L of NaCl was optimum for maximum
biomass production of Bacillus sp. QD14. A 57.11% enhancement of the biomass production was gained after
optimization in shake-flask cultivation. The biomass production of Bacillus sp. QD4 reached 9.13 +
0.29 x 10® CFU/mL, which was an excellent match for the predicted value, and the mean value of the match
degree was as high as 99.30%.

Conclusion: In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14
were optimized by PBD, SAM and BBD (RSM); the yield was increased by 57,11% in the conditions in our
study. We propose that the conditions optimized in the study can be applied to the fermentation for
commercialization production.

© 2015 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

As one of the phthalic acid esters (PAEs), dimethyl phthalate (DMP)
is widely employed in the manufacture of plastics and consumer
products including plasticizers for plastics, adhesives, dope, paint,
children's toys, medical devices and lubricants [1,2]. Due to the poor
chemical affinity of PAEs in these products, PAEs migrate into soils [3],
sediments and underground water [4,5] when discarded. A series of
recent reports has shown that PAEs may act as endocrine disrupters,
environmental carcinogens, teratogens and mutagens, even at low
concentrations [6,7]. Therefore, PAEs are considered one of the
top-priority environmental pollutants by the US Environmental
Protection Agency (US EPA), the European Union and the China
National Environmental Monitoring Center [4,8].

The principal methods employed to remove and eliminate
environmental PAEs include photo-chemical oxidation [9] and
biodegradation [2,5,10]. Due to the low rate of hydrolysis and photolysis
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of PAEs [11], especially in the subsurface, metabolic breakdown of this
pollutant by microorganisms may be a more feasible strategy. To
achieve successful environmental degradation of PAEs, large quantities
of bacterial biomass will be required. Studies on biodegradation have
also demonstrated that higher cell concentrations improve degradation
efficiency [12]. However, few studies have focused on the fermentation
of PAE-degrading bacteria, and none have focused on the fermentation
of DMP-degrading bacteria. Previous studies have focused on the
identification and characterization of PAE-degrading strains [2]. Our
present study is the first report on the optimization of a fermentation
medium for the production of the DMP-degrading strain Bacillus sp. QD14.

The growth of Bacillus and its DMP biodegradation rate are strongly
influenced by medium composition. Factors include the carbon
source, the nitrogen source, inorganic salts, trace elements, and
growth factors [12,13,14,15]. Hence, for developing an industrial
fermentation process, medium development is of the utmost
importance. The single variable optimization method is not only
tedious, but can also lead to misinterpretation of the results
because the interactions among different variables are overlooked
[16]. Statistical optimization not only allows quick screening for
significant variables in a large experimental design but also teases
out the roles of each component. In our study, we used a novel
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integrated statistical design that incorporated Plackett-Burman
design (PBD) [17], the Steepest Ascent Method (SAM) [18] and
Response Surface Methodology (RSM) [19] to optimize the medium
components for the production of the DMP-degrading strain
Bacillus sp. QD14. We propose that our optimization method can be
applied to the fermentation for commercialization production.

2. Materials and methods
2.1. Microorganism and medium conditions

The DMP-degrading strain Bacillus sp. QD14 adopted in the present
study was originally isolated in our laboratory from a soil sample
collected in the Nenjing River (Qigihar, China) and deposited at
Qiqgihar University. The strain obtained by enrichment-culture
techniques with DMP was identified according to the morphology and
comparison of 16SrDNA gene sequence. Cultures were maintained on
nutrient agar slants containing (g/L): YE, 10.0; peptone, 5.0; NaCl, 5.0;
agar, 20.0 and DMP 10.0 mg/L at 4°C and subcultured every two
weeks. A standard inoculum liquid medium (Luria broth, LB)
containing (g/L) YE, 10.0; peptone, 5.0; and NaCl, 5.0 and with a pH of
7.2 was inoculated by transferring a loop of microorganisms from the
slant culture into 250 mL Erlenmeyer flasks which were then
incubated at 37°C and agitated at 100 rpm in an orbital shaker
incubator. Inoculum (10.0 mL/L) was transferred into 250 mL
Erlenmeyer flasks containing 100 mL of production medium when
the inoculum liquid medium contained 1.00 x 10% CFU/mL. The
production medium was the same as the inoculum liquid medium
and was employed as a control medium. The Erlenmeyer flasks
were then incubated at 100 rpm for 48 h at 37°C. The DMP was of
high-performance liquid chromatography (HPLC) grade (Sigma,
USA), and all the other reagents were of analytical reagent grade
and purchased from Sinopharm Chemical Reagent Co., Ltd., China.

2.2. Degradation experiments

The minimum salt medium (MSM) used in the degradation
experiments contained (g/L): K;HPO,4, 0.5; KH,POy4, 0.2; NH4NOs, 1.0;
MgS0,-7H,0, 0.4; CaCl,, 0.1; FeCl,, 0.01; NaCl, 1.0; MnCl,-4H,0, 0.01
and ZnCl,, 0.01. The initial pH of the MSM was adjusted to 7.2 with
sterile 1.0 moL/L NaOH or HCl. The medium was then sterilized by
autoclaving for 25 min at 121°C.

Biodegradation of DMP (100 mg/L) by Bacillus sp. QD14 was studied
in 100 mL of sterilized MSM in 500 mL glass flasks incubated at 37°C on
arotary shaker operated at 150 rpm in the dark. At 8 h intervals, 2 mL of
sample was withdrawn and preserved at -20°C for optical density
measurements and gas chromatogram analysis. All experiments were
performed in triplicate. Samples and sterile controls (non-inoculated
MSM) were periodically analyzed in similar way.

The concentration of DMP was determined with an Agilent 7820A
gas chromatogram (GC) equipped with an FID detector and HP-5
capillary column (0.32 mm x 30 m x 0.25 um). The conditions were
as follows: carrier gas, high pure nitrogen gas (1 mL/min); FID
detector, 280°C; injector temperature, 250°C; injection volume, 1 pL.
The column was maintained at 60°C for 5 min and then increased to
270°C over a 10 min period with an increase rate of 30°C/min.

The microbial biomass in the culture flasks was determined
spectrophotometrically by measuring optical density at 600 nm
(ODggo) in a UV-VIS spectrophotometer (Persee T9, Purkinje General
Instrument Co., Ltd., China).

2.3. Fermentation process
Batch experiments were conducted in 250 mL Erlenmeyer flasks

containing 100 mL of liquid fermentation medium. The compositions
of the fermentation medium were glucose, wheat bran, corn meal,

KH,PO4, MgS0,4-7H,0, FeSO4, CaCl,, NaCl and riboflavin. The
concentrations of components were adjusted according to the
experimental designs in Table 1, Table 2 and Table 3. An inoculum
(10.0 mL/L) that contained 1.00 x 108 CFU/mL was transferred from
the LB medium into each fermentation medium, and fermentation
cultures were grown at 100 rpm for 48 h at 37°C. The initial pH of the
media was adjusted to 7.2 with sterile 1.0 moL/L NaOH. All flasks
were heat sterilized by autoclaving at 121°C and 103 kPa for 15 min
prior to inoculation in the shaking incubator.

24. Optimization of the production of the DMP-degrading strain Bacillus sp.
QD14

24.1. Identifying the significant variables with Plackett-Burman design

The PBD is a two-factorial design, which identifies the critical
physical-chemical parameters required for elevating the biomass
of DMP-degrading bacteria by screening n variables in n + 1
experiments. All the variables were investigated at two widely
spaced intervals specified as negative values (low level, -1) and
positive values (high level, +1) [17,20]. The details of the
experimental design matrix and experimental results obtained for the
screening of the variables are shown in Table 1. Two dummy
variables, whose levels did not change in the design, were introduced
to estimate the standard error of the population. Each row represents
a trial, and each column represents an independent (assigned) or
dummy (unassigned) variable. All experiments were performed in
triplicate and analyzed with ‘Minitab’ software (Version 16.1.0,
Minitab Co., USA). The effects of individual parameters on the
bacterial biomass were determined by [Equation 1]:

EX;) = ( [Equation 1]

SoME =M )
N

where E(X;) is the concentration effect of the variables tested in the
study, M;" and M;™ represent the responses (the biomass of Bacillus sp.
QD14) in trials in which the parameter was at its higher and lower
levels, respectively. N is the total number of trials, which was equal to
12.

2.4.2. Optimal region of the significant variables by the Steepest Ascent
Method

Experiments for each response were conducted along the path of
SAM with defined intervals by stepwise increasing or decreasing the
concentrations of variables, which were determined according to the
coefficients of [Equation 3]. The design and experimental results
obtained are shown in Table 2. The path starts from the design center
of the PBD, fully stretches outside the design space, and ends when no
further improvement in the response can be achieved. The paths of X;,
X3 and X5 for the biomass begin at 15.00, 7.50 and 6.00 (g/L), with a
step (A) of 2.50, 1.00 and 1.00 (g/L), respectively. While a maximum
value was found, the point would be close to the optimal parameters
and could be applied as a center point in the subsequent optimization
design [18,20].

2.4.3. Optimization of the significant variables by applying Response
Surface Methodology

The Box-Behnken Design (BBD) approach was used to determine
the optimum levels of three critical independent variables for
increasing the biomass production of Bacillus sp. QD14: glucose, corn
meal and NaCl. The experimental plan consisted of 17 trials, and each
independent variable in the design was studied at three different
levels, low (-1), medium (0) and high (+ 1) [19]. The experimental
design employed for the study is shown in Table 3. All the
experiments were performed in triplicate and the average of the
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Table 1
Experimental design matrix and results of PBD.
Runs Levels Variables® Biomass
(x 108 CFU/mL)
X, X5 X3 X4 X5 Xs X7 Xs Xg X0 X1 Observed Predicted
+1 20.00° 10.00 10.00 4.50 1.50 0.90 9.00 1.50 0.30 - -
-1 10.00 5.00 5.00 1.50 0.50 0.30 3.00 0.50 0.10 - -
1 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1 +1 6.83 £+ 0.12 6.85
2 -1 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1 7.33 £ 0.25 7.30
3 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1 +1 7.00 4+ 0.26 7.02
4 -1 -1 -1 +1 +1 +1 -1 +1 +1 -1 +1 6.50 £ 0.20 6.53
5 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 -1 7.13 £ 0.21 7.12
6 +1 +1 -1 +1 -1 -1 -1 +1 +1 +1 -1 7.13 4+ 0.06 7.10
7 +1 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1 7.57 £ 0.15 7.60
8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6.43 + 0.21 6.42
9 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 7.57 £ 0.21 7.55
10 +1 -1 -1 -1 +1 +1 +1 -1 +1 +1 -1 7.67 £0.25 7.63
11 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1 7.20 £ 0.10 7.22
12 +1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1 7.87 + 0.25 7.90

2 X;, glucose; X,, wheat bran; X3, corn meal; X;, KH,PO4; Xs, MgSO,4-7H,0; X6, FeSOy; X7, NaCl; X, CaCly; Xo, riboflavin; X; and X;; were dummy variables.

b Units: g/L.

biomass production obtained was taken as the dependent variable or
response (Y).

The data obtained from RSM (BBD) were subjected to analysis of
variance (ANOVA). The results of RSM were used to fit a second order
polynomial, [Equation 2], in the ‘Design Expert’ software (Version
8.0.5, State-Ease Inc., USA) statistical package. The general form of the
second order polynomial equation is:

Yi=og+ ) oixi+y i + > O‘ifijxfxf

where Y; is the predicted response, i and j are from 1 to the number of
variables (n), oy is the offset term, ¢ is the ith linear coefficients, a; is
the ith quadratic coefficient, ¢ is the ijth interaction coefficient, and x;
and x; are the levels of the independent variables that influence the
response variable Y. Statistical significance of the model equation was
determined by Fisher's test (F-value), and the proportion of variance
explained by the model was obtained by calculating the multiple
coefficients of determination R-squared (R?) value.

[Equation 2]

2.4.4. Analytical method of the bacterial biomass production

The biomass of Bacillus sp. QD14 was determined by counting viable
cells with the ‘Drop count method’ of Miles and Misra [21]. Decimal
serial dilutions of fermentation solution were prepared in sterile
water. The fermentation solution (0.1 mL) was dropped onto 3-
4 day-old agar plates and incubated at 37°C for 48 h. The composition

Table 2

Experiment design and results of the SAM for the biomass of Bacillus sp. QD 4.
Runs Step change value Variables® Biomass

8
X X X, (x10® CFU/mL)

1 X 15.00¢ 7.50 6.00 7.37 £ 0.21
- A? 2.50 1.00 1.00 -
2 X+ 1A 17.50 8.50 7.00 7.77 £ 0.15
3 X+ 2A 20.00 9.50 8.00 8.10 £+ 0.10
4 X+ 3A 22.50 10.50 9.00 8.53 +0.21
5 X+ 4A 25.00 11.50 10.00 9.23 4+ 0.25
6 X+ 5A 27.50 12.50 11.00 8.60 + 0.30
7 X+ 6A 30.00 13.50 12.00 833 £ 0.15
8 X+ 7A 32.50 14.50 13.00 8.17 £ 0.29
9 X+ 8A 35.00 15.50 14.00 8.03 £+ 0.12

@ A step of the Steepest Ascent Method.
b X1, glucose; X3, corn meal; X, NaCl.
¢ Units: g/L.

of the agar plate was the same with the nutrient agar slopes. In
addition, the biomass of the bacterium was calculated as colony
forming units (CFU) per mL. Dilutions with less than 10 or more than
150 colonies were discarded [22]. Three plates were taken each time
for sampling. Each data point is shown as an average with an error bar
(mean + SD, n = 3).

3. Results and discussion
3.1. Degradation of DMP by Bacillus sp. QD14

The biodegradation efficiency of DMP by Bacillus sp. QD4 was
investigated in MSM in the dark. As shown in Fig. 1, Bacillus sp. QD14
could degrade DMP completely in 64 h time, and more than 90% of
DMP was degraded after a 48 h incubation. The cell concentration
reached a maximum of ODggo = 0.54 at 56 h. A significant positive
correlation was found between the degradation efficiency of DMP and

Table 3
Experimental design matrix and results of BBD for the biomass of Bacillus sp. QD14.

Runs Levels Variables® Biomass (x 10 CFU/mL)
X1 X3 X7 Observed Predicted

+1 30.00" 13.50 12.00

0 25.00 11.50 10.00

-1 20.00 9.50 8.00
1 0 -1 +1 8.60 + 0.20 8.60
2 0 -1 -1 8.40 + 0.30 8.38
3 -1 0 -1 8.53 £+ 0.31 8.57
4 -1 -1 0 8.77 + 0.25 8.74
5 0 +1 +1 8.60 + 0.10 8.63
6 0 0 0 9.17 £ 0.21 9.12
7 +1 0 -1 8.67 £+ 0.23 8.65
8 +1 0 +1 8.40 £+ 0.17 8.38
9 0 0 0 9.10 4+ 0.20 9.12
10 -1 +1 0 8.90 £+ 0.30 8.88
11 0 0 0 9.17 4+ 0.06 9.12
12 0 +1 -1 8.70 + 0.10 8.70
13 1 +1 0 8.63 £+ 0.15 8.66
14 -1 0 +1 8.97 + 0.38 8.99
15 0 0 0 9.10 + 0.17 9.12
16 0 0 0 9.07 £+ 0.35 9.12
17 +1 -1 0 8.40 £+ 0.10 8.45

2 X, glucose; X3, corn meal; X7, NaCl.
b Units: g/L.
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Fig. 1. Bacterial growth and DMP degradation by Bacillus sp. QD1 4.

the cell concentration of Bacillus sp. QD14. Previous studies have shown
that factors such as cell concentration, pH and temperature affect the
degradation of PAEs by bacterium. Higher cell concentration led to
higher PAE degradation efficiency. The degradation of PAE by bacteria
is generally caused by the production of an esterase [23]. It is
reasonable to assume that more esterase produced by larger numbers
of cells degrades DMP more efficiently.

3.2. Screening for significant variables by employing a Plackett-Burman
design

This experiment was conducted in 12 runs to study the effect of
the screened variables. Table 1 shows the results of the screening
experiments. The results of statistical analyses of the responses are
shown in Table 4 (part of the data is not shown). The F-value of the
model, 58.65, indicated that the model was significant (the p
values < 0.05 indicated that the model terms were significant). The
coefficient R? (0.9962) of the models for the biomass production
and the R-Adj (0.9792) indicated that the data variability could be
fully explained by the models.

A variable with a confidence level above 95% is considered a
significant parameter. Accordingly, X;, X5 and X; were significant
terms. The other tested factors did not result in significant variations
in biomass production. Based on our ANOVA results, a first-order
polynomial equation was derived, which represented the biomass
production of the Bacillus sp. QD4 as an equation of nine independent
variables:

Y = 5.25 + 0.0483X, + 0.00778X, + 0.0544X; + 0.0204X,

[Equation 3|
—0.0278X5—0.0278X¢ + 0.105X,—0.05X; + 0.75X,.

Table 4

Regression coefficients and associated statistical analysis of the model for PBD.
Source Coefficient Sum of  Degree of Mean F-value Prob >

squares freedom  square F

Model 4.936 (constant) 2.19935 9 0.24437 58.65 0.017"
X1 0.0483 0.70083 1 0.70083 16820 0.006"
X3 0.0544 022231 1 0.22231 53.36 0.018"
X7 0.126 118231 1 1.18231 28376 0.004"
Residual - 0.00833 2 0.00417 - -
Total - 220769 11 - - -

R? = 0.9962, Adjusted R? = 0.9792, Predicted R* = 0.8641.
* Statistically significant at the 95% confidence level (p < 0.05).

When the concentration effect value of the experimental variable is
negative, the variable is associated with greater biomass production at
lower concentrations. Conversely, when the experimental variable is
positive, the variable is associated with greater biomass production at
higher concentrations. According to the coefficients of [Equation 3], X1,
X5, X3, X4, X7 and Xy led to greater biomass production with higher
concentrations, while X5, Xg and Xg showed the inverse effect. Thus,
higher concentrations of the three significant parameters X1, X3 and X7
were selected for the further optimized fermentation medium to
achieve a maximum response region by SAM.

The pathway of DMP biodegradation by the bacterium could be
described as follows: first, DMP is rapidly hydrolyzed by an esterase to
metabolites such as phthalic acid (PA), after which PA is metabolized
to PCA by phthalate dioxygenase, which enters the tricarboxylic acid
cycle (TCA) and is finally oxidized to carbon dioxide and water [2,24,
25]. Thus, bacterial concentration and enzyme activity are equally
critical in the DMP biodegradation process. Meanwhile, there is a
positive correlation between bacterial biomass and metabolites within
a certain bacterium concentration range [26]. Based on these
principles, the optimization of biomass production was selected as the
main focus of study. To improve degradation ability, the bacterial
concentration was increased. Another reason that led us to focus on
the biomass production rather than the activity of an enzyme was that
the activity of an enzyme would be affected by many different ions
and growth factors [27].

Various ions have a significant impact on bacterial growth, including
Na*, Ca?*, Mg?*, Fe?™, Ccu®** and PO3  [28]. Hence, KH,POy,
MgS0,- 7H,0, FeSO,4, NaCl and CaCl, were chosen as mineral salts and
trace elements added to the fermentation medium [14,29]. Riboflavin
serves as a precursor for the synthesis of the coenzymes flavin
mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which
are utilized as electron acceptors for many oxidoreductases [30]. Thus,
minute quantities of riboflavin were added into the medium as a
growth-promoting factor. The PBD results demonstrated that only
carbon and nitrogen nutrient sources and Nat were significant
variables that influenced the bacterium concentration in the
fermentation.

3.3. Determining the optimal region by applying the Steepest Ascent
Method

Given the PBD results and the aforementioned linear model
[Equation 3], glucose, corn meal and NaCl were the three significant
variables for the response. The higher the concentration of glucose,
corn meal, and NaCl, the greater the biomass production of the
bacterium. Therefore, the SAM followed a path in which X;, X5 and X,
would increase with defined intervals. The experimental results are
shown in Table 2. The highest response was achieved in experiment 5
when X;, X3 and X7 were 25.0 g/L, 11.5 g/L and 10.0 g/L, respectively,
and this optimal point was chosen as the basis for further optimization.

As shown in Table 2, the biomass production did not increase further
with higher concentrations of the three variables. For glucose, the
growth of Bacillus sp. QD4 was inhibited at concentrations of glucose
higher than 25.0 g/L and could tolerate this glucose concentration
limit. This phenomenon is known as the Crabtree effect [31], which
states that the growth of a bacterium is different in the presence of
different glucose concentrations. The bacterial biomass decreases
when the glucose concentration exceeds the limit. Consequently, the
bacterial yield could not be further improved by increasing the
glucose concentration from 25.0 g/L to 35.0 g/L. Although corn meal
contains large amounts of trace elements and growth factors that are
beneficial for the growth of bacterium at higher concentrations,
excessive corn meal in the fermentation medium also results in
decreased water activity (o), which may make the cells less
adaptable [32]. The growth of DMP-degrading bacteria is also different
in the presence of Na salt. Some strains isolated from the South China
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Table 5

ANOVA of the quadratic model for BBD.
Source Sum of Degree of Mean F-value Prob > F

squares freedom square

Model 1.22 9 0.14 67.27 <0.0001™*
X 0.14 1 0.14 70.55 <0.0001™*
X3 0.056 1 0.056 27.56 0.0012*
X, 0.443 1 0.443 441 0.0739
X1X3 0.124 1 0.124 1.24 0.3022
X1 X7 0.12 1 0.12 60.77 0.0001™*
X5X; 0.022 1 0.022 11.16 0.0124*
X2 0.15 1 0.15 74.74 <0.0001™*
X3 0.28 1 0.28 136.71 <0.0001"*
X3 0.35 1 0.35 174.65 <0.0001™*
Residual 0.014 7 0.1 - -
Lack of fit 0.304 3 0.101 1.02 0.4726
Pure error 0.398 4 0.1 - -
Cor total 1.23 16 - - -

R? = 0.9886, Adj R? = 0.9739, Pred R? = 0.9107, CV. % = 0.51.
* Statistically significant at the 95% confidence level (p < 0.05).
** Statistically significant at the 99.9% confidence level (p < 0.001).

Sea can degrade DMP effectively when grown in the salinity range of 0-
10.0 g/L, but the lag phase also increased with increasing salinity [10].
Higher salinity levels also reduced bacterial growth rates, resulting in
longer degradation times. The highest concentration of NaCl the
bacteria could tolerate was 40.0 g/L [33]. In the present study, our
optimal concentration was 10.0 g/L. The most probable reason is that
higher salt concentrations in the sea eventually lead to some degree of
tolerance or dependence.

3.4. Optimization of the significant variables by applying Response Surface
Methodology

BBD was employed not only to study the interactions among the
three significant variables (glucose, corn meal and NaCl) but also to
determine their optimal levels. The other variables in the study
were maintained at a constant level that gave maximal biomass in
the PBD experiments. The coefficients of the first-order polynomial
equation derived from PBD experiments represented the effects of
influential experiment variables that were positively or negatively
correlated with responses (biomass production) [34]. According to

a
9.20
9.00
8.80
B ss0
S 8
£
O 840
[a1]

8.20 e
A‘\

13.50

)

27.50

12.50
11.50 25.00

Corn meal 10.50 22.50

9.50 20.00

30.00

Glucose

the coefficients of [Equation 3], the variables X3, X4 and X9 were
positively correlated with biomass production, which indicated
that higher levels were beneficial. Thus, the wheat bran, KH,PO4
and riboflavin concentrations were fixed at higher levels (+1)
(10.0, 4.5 and 0.3 g/L) while MgS0,4-7H,0, FeSO4 and CaCl,
concentrations were fixed at lower levels (-1) (0.5, 0.3 and 0.5 g/L).

Seventeen experimental runs were carried out with different
combinations of the three significant variables. The results for biomass
production are presented in Table 3. The second-order polynomial
model for biomass production is shown in [Equation 4] (in coded
value) and [Equation 5] (in actual value):

Y = 9.12—0.13X, + 0.083X; + 0.033X, + 0.025X,X;

Equation 4
—0.18X,X;—0.075X3X; —0.19X3 —0.26X5—0.29X5 [Fa ]

Y = —17.088 + 0.498Cc05e + 1.638Ccom meal + 2-116Cnaq

+0.1 24Cglucose Ccorn meal 0.0175 Cglucose CNaCl .

3 , [Equation 5]
—0.0188 Ccorn meal CNaCl —03 77Cglucose _0'0640Ccorn meal
—0.0723Cq

where Y is the predicted biomass production (x 108 CFU/mL) and X;, X5
and X7 are coded values for glucose, corn meal and NaCl concentrations,
respectively.

The adequacy of the model was checked using ANOVA and tested
using F-test. The results are shown in Table 5. The Model F-value of
67.27 implies that the model is significant and the ‘Lack of Fit' F-value
is 1.02 which indicates the ‘Lack of Fit’ is not significant. A coefficient
of determination (R? value) closer to 1 indicates that there is a better
correlation between observed and predicted values [35]. In the
present study, R? was 0.9886, indicating suitable agreement between
experimental and predicted values. The predicted R? of 0.9107 and the
adjusted R? of 0.9739 were also consistent. Here, the coefficient of
variation (CV) indicates the degree of precision with which the
experiments were compared. A higher reliability of the experiment is
usually indicated by a lower value of CV [36]. In the present study, the
CV of the model was 0.51%, reflecting the high precision and reliability
of the experiments. All the statistical results of the models show high
accuracy and general applicability of the second-order polynomial
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Fig. 2. Response surface (a) and contour plots (b) for the effect of glucose and corn meal on biomass production.
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Fig. 3. Response surface (a) and contour plots (b) for the effect of glucose and NaCl on biomass production.

equations, and they are adequate to describe the responses observed in
the experiments.

The values of ‘Prob > F are employed to check the significance of
each model term which, in turn, are of vital importance for
understanding the pattern of mutual interactions between the
experiment variables. Values of ‘Prob > F less than 0.001 indicate
which model terms are the most significant. Table 5 shows that the
linear terms of the independent variables including glucose and corn
meal exert a significant effect on the biomass production of bacterium.
According to [Equation 4], the positive coefficient of X, and the
negative coefficient of X; showed a linear effect on biomass
production. The quadratic terms of the three variables and the
interaction between X; and X, X3 and X7 also had significant effects.
Notably, X%, X3, X2 and X;X7 (p < 0.001) were higher than the other
effects, which demonstrated that these are the most significant
variables influencing biomass production.

d
9.20
9.00
8.80
w
0 860
©
£
O 840
[aa]

12.00

10.00

NaCl 9.00

11.50
10.50
8.00 9.50

13.50

Corn meal

Fig. 2 shows the response surface plots and corresponding contour
plots for the biomass production generated by the predicted model.
Biomass production increased significantly until the concentration of
corn meal reached 11.79 g/L, and then it decreased. The effect of
glucose on biomass production was also sensitive in the designed
range, yielding the p-valve (<0.0001) in Table 5. According to the
response curves in Fig. 3, the most significant interaction between
glucose and NaCl could be explained reasonably by the elliptical shape
of the contour plot, with p-valve (0.0001). Biomass production was
also linearly increased with NaCl concentrations from 8.00 g/L to
10.38 g/L, and then decreased. In Fig. 4, the biomass value began to
fall when corn meal or NaCl were higher than 11.81 g/L or 10.07 g/L,
respectively, indicating a maximum predicted value of biomass
production.

Based on these graphs, the maximal biomass production of
9.149 x 10® CFU/mL could be observed at 23.29 g/L of glucose and

b .. Biomass

11.00

9.00

8.00

9.50 10.50 11.50 12.50 13.50
X: Corn meal

Fig. 4. Response surface (a) and contour plots (b) for the effect of corn meal and NaCl on biomass production.
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11.79 g/L of corn meal, while NaCl concentration was held at the zero
level (10.00 g/L) (Fig. 2); the highest biomass production of
9.153 x 10® CFU/mL could be observed at 22.80 g/L of glucose and
10.38 g/L of NaCl, and 11.50 g/L of corn meal (Fig. 3). With 11.82 g/L
of corn meal and 10.07 g/L of NaCl, biomass production reached its
highest value of 9.127 x 108 CFU/mL with glucose held at 25.00 g/L
(Fig. 4). According to [Equation 5], we predicted that a maximum
biomass production of 9.156 x 10® CFU/mL could be achieved at
22.88 g/L of glucose, 11.74 g/L of corn meal and 10.34 g/L of NaCl.
The coded values of X;, X3 and X7 were -0.424, 0.118 and 0.170,
respectively.

3.5. Validation of the experimental model

Our experimental conditions are presented in Table 6, along with
the responses obtained. The observed biomass production, 8.60 +
0.10 x 108 CFU/mL, achieved a 100.00% match degree compared
with the predicted values (run No. 6). Moreover, the mean value of
biomass production was 8.75 + 0.18 x 108 CFU/mL, which was in
good accordance with the predicted value of 8.81 x 10% CFU/mL
(the mean match degree: 99.30%). The model showed good
agreement with the experimental data, which confirmed the
validity and adequacy of the model.

In conclusion, the optimal combined levels of three significant
variables were obtained through BBD. Biomass production peaked at
9.13 + 0.29 x 108 CFU/mL with optimal medium composition, which
approximately equaled the predicted value of 9.16 x 10® CFU/mL and
was 57.11% higher than the biomass obtained from the initial
production medium (5.83 & 0.12 x 108 CFU/mL).

4. Conclusions

We conducted an investigation of the optimal medium components
for liquid fermentation of the DMP-degrading strain Bacillus sp. QD14
in shake-flask culture. A highly efficient optimization method that
incorporated Plackett-Burman Design, the Steepest Ascent Method
and Response Surface Methodology (BBD) was developed and
utilized. Biomass production was significantly influenced by
glucose, corn meal and NaCl.

The predicted values were in excellent agreement with the
experimental values in validation experiments, which confirmed the
accuracy of the model. The resulting fermentation biomass was 57.11%
higher than the biomass obtained from the initial production medium.
Furthermore, the optimization of the medium resulted in a reduced
cost of medium constituents. Our optimization method proved to be
effective and relatively simple and saved both time and materials.

Table 6
Validation of the model and results of the confirmatory experiments.

Runs Variables® Biomass (x 108 CFU/mL)  Match degree (%)°

X1 X3 X7 Observed Predicted
1 20.00° 1150 8.00 8.50 4+ 0.10 8.57 99.18
2 20.00 11,50 10.00 8934032 9.06 98.60
3 2500 1350 10.00 8.87+0.15 895 99.07
4 25.00 9.50 1000 877 £0.15 8.78 99.85
5 30.00 13.50 8.00 847 +0.12 858 98.68
6 25.00  9.50 1200 8.604+0.10 8.60 100.00
7 22.88 11.74 1034 9.134+029 9.16 99.71
Ave - - - 8.754+0.18 8.81 99.30

@ X, glucose; X3, corn meal; X7, NaCl.
b Units g/L.
¢ Match degree (%) = (observed value / predicted value) x 100%.
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